Go to the documentation of this file.
97 #define MAX_VLC_SIZE 864
103 int counts[17] = {0};
110 codes[0] = counts[0] = 0;
111 for (
int i = 0;
i < 17;
i++)
112 codes[
i+1] = (codes[
i] + counts[
i]) << 1;
124 for (
int i = 0;
i < count;
i++) {
125 for (
int j = 0; j < 2; j++) {
138 for (
int i = 0;
i < 7;
i++)
139 for (
int j = 0; j < 4; j++)
142 for (
int i = 0;
i < 7;
i++)
143 for (
int j = 0; j < 3; j++)
144 for (
int k = 0; k < 4; k++)
160 uint8_t cu_split[1+4+16+64];
162 uint8_t coded_blk[64];
164 uint8_t avg_buffer[64*64 + 32*32*2];
165 uint8_t * avg_data[3];
233 if (
s->nb_progress < count) {
238 memset(
s->progress +
s->nb_progress, 0, (count -
s->nb_progress) *
sizeof(*
s->progress));
239 for (
int i =
s->nb_progress;
i < count;
i++) {
243 s->nb_progress =
i + 1;
247 for (
int i = 0;
i < count;
i++)
264 for (
int i = 0;
i < 3;
i++) {
266 if (!
s->last_frame[
i])
279 if (
width !=
s->avctx->width ||
height !=
s->avctx->height) {
283 for (
int i = 0;
i < 3;
i++)
289 if (
s->avctx->width <= 64 ||
s->avctx->height <= 64)
290 av_log(
s->avctx,
AV_LOG_WARNING,
"unable to faithfully reproduce emulated edges; expect visual artefacts\n");
296 s->cu_width = (
width + 63) >> 6;
297 s->cu_height = (
height + 63) >> 6;
299 s->pu_stride =
s->cu_width << 3;
300 s->blk_stride =
s->cu_width << 4;
311 for (
int j = 0; j <
s->cu_height << 4; j++)
312 for (
int i = 0;
i <
s->cu_width << 4;
i++)
318 s->dblk_stride =
s->awidth >> 2;
320 size =
s->dblk_stride * (
s->aheight >> 2);
328 memset(
s->top_str, 0,
size);
329 memset(
s->left_str, 0,
size);
381 for (
int i = 0;
i < count;
i++)
382 for (
int j = 0; j < 2 <<
i; j++)
393 int last_size, sum = 0;
395 for (
int i = 0;
i <
s->cu_height;
i++)
403 for (
int i = 1;
i <
s->cu_height;
i++) {
405 if (
s->slice[
i].sign)
411 s->slice[
i].size = last_size;
412 sum +=
s->slice[
i].size;
432 return ypos + dy && xpos + dx +
size <=
s->awidth;
437 return xpos + dx && ypos + dy +
size <=
s->aheight;
486 memset(
i->t, 0x80,
sizeof(
i->t));
487 memset(
i->l, 0x80,
sizeof(
i->l));
488 i->has_t =
i->has_tr =
i->has_l =
i->has_ld = 0;
500 if (cu->
ypos + yoff > 0) {
512 if (cu->
xpos + xoff > 0)
516 if (cu->
xpos + xoff > 0) {
519 for (
int y = 0; y <
size; y++)
525 for (
int y =
size; y <
size * 2; y++)
530 if (cu->
ypos + yoff > 0)
537 int lastl = p->
l[
size + 1];
538 int lastt = p->
t[
size + 1];
539 int tmp1[64], tmp2[64];
540 int top_ref[64], left_ref[64];
543 for (
int i = 0;
i <
size;
i++) {
544 tmp1[
i] = lastl - p->
t[
i + 1];
545 tmp2[
i] = lastt - p->
l[
i + 1];
549 for (
int i = 0;
i <
size;
i++) {
550 top_ref[
i] = p->
t[
i + 1] << (
shift - 1);
551 left_ref[
i] = p->
l[
i + 1] << (
shift - 1);
554 for (
int y = 0; y <
size; y++) {
556 int sum = left_ref[y] +
size;
557 for (
int x = 0; x <
size; x++) {
558 int v = tmp1[x] + top_ref[x];
575 for (
int x = 0; x <
size; x++)
578 for (
int y = 0; y <
size; y++)
586 for (
int y = 0; y <
size; y++)
590 dst[0] = (p->
t[1] + p->
l[1] + 2 *
dst[0] + 2) >> 2;
591 for (
int x = 1; x <
size; x++)
592 dst[x] = (p->
t[x + 1] + 3 *
dst[x] + 2) >> 2;
593 for (
int y = 1; y <
size; y++)
601 for (
int i = 1;
i <
size - 1;
i++)
609 int sum = (v0 << 5) + (1 << (5 - 1));
610 for (
int i = 0;
i <
size;
i++) {
619 for (
int x = 0; x <
size; x++) {
622 off = (sum >> 5) + 32;
625 for (
int y = 0; y <
size; y++)
628 for (
int y = 0; y <
size; y++) {
629 int a =
src[off + y];
630 int b =
src[off + y + 1];
631 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
640 for (
int y = 0; y <
size; y++) {
643 off = (sum >> 5) + 32;
648 for (
int x = 0; x <
size; x++) {
649 int a =
src[off + x];
650 int b =
src[off + x + 1];
651 dst[y*
stride + x] = ((32 - frac) *
a + frac *
b + 16) >> 5;
659 uint8_t filtered1[96], filtered2[96];
663 }
else if (imode == 1) {
665 }
else if (imode <= 9) {
667 int add_size = (
size * ang_weight + 31) >> 5;
675 }
else if (imode == 10) {
680 for (
int y = 0; y <
size; y++)
681 for (
int x = 0; x <
size; x++)
685 for (
int x = 0; x <
size; x++)
688 }
else if (imode <= 17) {
691 int add_size = (
size * ang_weight + 31) >> 5;
693 memcpy(filtered1 + 32 - 1, p->
l,
size + 1);
694 memcpy(filtered2 + 32 - 1, p->
t,
size + 1);
696 filtered1[32 - 1] = p->
l[0];
698 filtered2[32 - 1] = p->
t[0];
703 for (
int i = 1;
i < add_size;
i++) {
705 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
709 }
else if (imode <= 25) {
712 int add_size = (
size * ang_weight + 31) >> 5;
714 memcpy(filtered1 + 32 - 1, p->
t,
size + 1);
715 memcpy(filtered2 + 32 - 1, p->
l,
size + 1);
717 filtered1[32 - 1] = p->
t[0];
719 filtered2[32 - 1] = p->
l[0];
724 for (
int i = 1;
i < add_size;
i++) {
726 filtered1[32 - 1 -
i] = filtered2[32 - 1 + (sum >> 8)];
730 }
else if (imode == 26) {
739 for (
int y = 0; y <
size; y++)
742 }
else if (imode <= 34) {
744 int add_size = (
size * ang_weight + 31) >> 5;
767 #define MK_UNIQUELIST(name, type, max_size) \
769 type list[max_size]; \
771 } unique_list_##name; \
773 static void unique_list_##name##_init(unique_list_##name * s) \
775 memset(s->list, 0, sizeof(s->list)); \
779 static void unique_list_##name##_add(unique_list_##name * s, type cand) \
781 if (s->size == max_size) \
784 for (int i = 0; i < s->size; i++) { \
785 if (!memcmp(&s->list[i], &cand, sizeof(type))) { \
789 s->list[s->size++] = cand; \
797 int blk_pos, tl_x, tl_y;
798 unique_list_intramode ipm_cand;
806 unique_list_intramode_init(&ipm_cand);
809 const PUInfo * pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
811 unique_list_intramode_add(&ipm_cand,
s->blk_info[cu->blk_pos -
s->blk_stride + (sub & 1)].imode);
814 blk_pos = cu->blk_pos + (sub >> 1) *
s->blk_stride + (sub & 1);
817 const PUInfo * pu = &
s->pu_info[cu->pu_pos - 1];
819 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos - 1 - (sub & 1)].imode);
822 tl_x = !(sub & 2) ? (cu->xpos + (sub & 1) * 4) : cu->xpos;
823 tl_y = cu->ypos + (sub & 2) * 4;
824 if (tl_x > 0 && tl_y > 0) {
827 case 0: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride - 1];
break;
828 case 1: pu = &
s->pu_info[cu->pu_pos -
s->pu_stride];
break;
829 default: pu = &
s->pu_info[cu->pu_pos - 1];
833 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 1].imode);
835 unique_list_intramode_add(&ipm_cand,
s->blk_info[blk_pos -
s->blk_stride - 2].imode);
843 return ipm_cand.list[cu->imode_param[sub]];
846 enum IntraMode imode = cu->imode_param[sub];
847 qsort(ipm_cand.list, 3,
sizeof(ipm_cand.list[0]),
ipm_compar);
848 for (
int i = 0;
i < 3;
i++)
849 if (imode >= ipm_cand.list[
i])
871 unique_list_mvinfo_add(skip_cand, *mvi);
876 int mv_size =
size >> 2;
882 if (cu->
ypos && cu->
xpos + size < s->awidth)
884 if (cu->
xpos && cu->
ypos + size < s->aheight)
893 for (
int i = skip_cand->size;
i < 4;
i++)
903 int mv_size =
size >> 2;
906 dim->w =
dim->h = mv_size;
910 dim->h = mv_size >> 1;
913 dim->w = mv_size >> 1;
917 dim->w =
dim->h = mv_size >> 1;
921 dim->h = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
925 dim->h = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
928 dim->w = !part_no ? (mv_size >> 2) : ((3 * mv_size) >> 2);
932 dim->w = !part_no ? ((3 * mv_size) >> 2) : (mv_size >> 2);
964 *mv_pos +=
dim->h*
s->blk_stride -
dim->w;
969 *mv_pos +=
dim->h *
s->blk_stride;
1006 if (
a->mvref !=
b->mvref)
1011 int dx =
a->f_mv.x -
b->f_mv.x;
1012 int dy =
a->f_mv.y -
b->f_mv.y;
1016 int dx =
a->b_mv.x -
b->b_mv.x;
1017 int dy =
a->b_mv.y -
b->b_mv.y;
1030 ret->x = a.x < c.x ? c.x : a.x; \
1033 ret->x = a.x < c.x ? a.x : c.x; \
1043 int mv_pos = mv_y *
s->blk_stride + mv_x;
1052 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1054 cand[cand_size++] =
mv->f_mv;
1057 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1059 cand[cand_size++] =
mv->f_mv;
1062 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1064 cand[cand_size++] =
mv->f_mv;
1067 switch (cand_size) {
1073 f_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1074 f_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1077 mv_pred(&f_mv, cand[0], cand[1], cand[2]);
1087 dst->f_mv.x =
src->f_mv.x + f_mv.
x;
1088 dst->f_mv.y =
src->f_mv.y + f_mv.
y;
1094 const MVInfo *
mv = &
s->blk_info[mv_pos - 1].mv;
1096 cand[cand_size++] =
mv->b_mv;
1099 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride].mv;
1101 cand[cand_size++] =
mv->b_mv;
1104 const MVInfo *
mv = &
s->blk_info[mv_pos -
s->blk_stride + mv_w].mv;
1106 cand[cand_size++] =
mv->b_mv;
1109 switch (cand_size) {
1115 b_mv.
x = (cand[0].
x + cand[1].
x) >> 1;
1116 b_mv.
y = (cand[0].
y + cand[1].
y) >> 1;
1119 mv_pred(&b_mv, cand[0], cand[1], cand[2]);
1129 dst->b_mv.x =
src->b_mv.x + b_mv.
x;
1130 dst->b_mv.y =
src->b_mv.y + b_mv.
y;
1135 int pu_size =
size >> 3;
1137 int imode, mv_x, mv_y, mv_pos, count, mv_size;
1138 unique_list_mvinfo skip_cand;
1147 for (
int y = 0; y < 2; y++)
1148 for (
int x = 0; x < 2; x++)
1149 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode =
1157 for (
int y = 0; y < size >> 2; y++)
1158 for (
int x = 0; x < size >> 2; x++)
1159 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].imode = imode;
1162 mv_x = cu->
xpos >> 2;
1163 mv_y = cu->
ypos >> 2;
1166 for (
int part_no = 0; part_no < count; part_no++) {
1170 for (
int y = 0; y <
dim.h; y++)
1171 for (
int x = 0; x <
dim.w; x++)
1172 s->blk_info[mv_pos + y*
s->blk_stride + x].mv =
mv;
1177 unique_list_mvinfo_init(&skip_cand);
1180 mv_size =
size >> 2;
1181 for (
int y = 0; y < mv_size; y++)
1182 for (
int x = 0; x < mv_size; x++)
1183 s->blk_info[cu->
blk_pos + y*
s->blk_stride + x].mv =
mv;
1186 for (
int y = 0; y < pu_size; y++)
1187 for (
int x = 0; x < pu_size; x++)
1188 s->pu_info[cu->
pu_pos + y*
s->pu_stride + x] = pui;
1225 #define FILTER1(src, src_stride, src_y_ofs, step) \
1226 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1227 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1228 +52 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1229 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1230 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1231 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1233 #define FILTER2(src, src_stride, src_y_ofs, step) \
1234 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1235 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1236 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1237 +20 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1238 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1239 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 16) >> 5
1241 #define FILTER3(src, src_stride, src_y_ofs, step) \
1242 ( (src)[(y + src_y_ofs)*(src_stride) + x - 2*step] \
1243 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x - 1*step] \
1244 +20 * (src)[(y + src_y_ofs)*(src_stride) + x ] \
1245 +52 * (src)[(y + src_y_ofs)*(src_stride) + x + 1*step] \
1246 - 5 * (src)[(y + src_y_ofs)*(src_stride) + x + 2*step] \
1247 + (src)[(y + src_y_ofs)*(src_stride) + x + 3*step] + 32) >> 6
1249 #define FILTER_CASE(idx, dst, dst_stride, filter, w, h) \
1251 for (int y = 0; y < h; y++) \
1252 for (int x = 0; x < w; x++) \
1253 (dst)[y*dst_stride + x] = av_clip_uint8(filter); \
1256 #define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step) \
1258 FILTER_CASE(1, dst, dst_stride, FILTER1(src, src_stride, src_y_ofs, step), w, h) \
1259 FILTER_CASE(2, dst, dst_stride, FILTER2(src, src_stride, src_y_ofs, step), w, h) \
1260 FILTER_CASE(3, dst, dst_stride, FILTER3(src, src_stride, src_y_ofs, step), w, h) \
1263 static void luma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int cx,
int cy)
1266 for (
int y = 0; y <
h; y++)
1267 memcpy(
dst + y*dst_stride,
src + y*src_stride,
w);
1272 }
else if (cx != 3 || cy != 3) {
1273 uint8_t
tmp[70 * 64];
1277 for (
int j = 0; j <
h; j++)
1278 for (
int i = 0;
i <
w;
i++)
1279 dst[j*dst_stride +
i] = (
1280 src[j*src_stride +
i] +
1281 src[j*src_stride +
i + 1] +
1282 src[(j + 1)*src_stride +
i] +
1283 src[(j + 1)*src_stride +
i + 1] + 2) >> 2;
1287 static void chroma_mc(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h,
int x,
int y)
1290 for (
int j = 0; j <
h; j++)
1291 memcpy(
dst + j*dst_stride,
src + j*src_stride,
w);
1292 }
else if (x > 0 && y > 0) {
1295 if (x == 3 && y == 3)
1298 a = (4 - x) * (4 - y);
1302 for (
int j = 0; j <
h; j++)
1303 for (
int i = 0;
i <
w;
i++)
1304 dst[j*dst_stride +
i] =
1305 (
a *
src[j*src_stride +
i] +
1306 b *
src[j*src_stride +
i + 1] +
1307 c *
src[(j + 1)*src_stride +
i] +
1308 d *
src[(j + 1)*src_stride +
i + 1] + 8) >> 4;
1310 int a = (4 - x) * (4 - y);
1311 int e = x * (4 - y) + (4 - x) * y;
1312 int step = y > 0 ? src_stride : 1;
1313 for (
int j = 0; j <
h; j++)
1314 for (
int i = 0;
i <
w;
i++)
1315 dst[j*dst_stride +
i] =
1316 (
a *
src[j*src_stride +
i] +
1317 e *
src[j*src_stride +
i +
step] + 8) >> 4;
1321 static int check_pos(
int x,
int y,
int cw,
int ch,
int w,
int h,
int dx,
int dy,
int e0,
int e1,
int e2,
int e3)
1325 return x2 - e0 >= 0 && x2 + cw + e1 <=
w && y2 - e2 >= 0 && y2 + ch + e3 <=
h;
1331 int off = !
avg ? y * frame_linesize[0] + x : 0;
1333 int fh =
s->aheight;
1339 if (
check_pos(x, y,
w,
h, fw, fh, dx, dy,
rv60_edge1[cx],
rv60_edge2[cx],
rv60_edge1[cy],
rv60_edge2[cy])) {
1343 ref->data[0] + (y + dy) *
ref->linesize[0] + x + dx,
1348 int xoff = x + dx - 2;
1349 int yoff = y + dy - 2;
1350 s->vdsp.emulated_edge_mc(buf,
1351 ref->data[0] + yoff *
ref->linesize[0] + xoff,
1352 70,
ref->linesize[0],
1358 buf + 70 * 2 + 2, 70,
w,
h, cx, cy);
1362 int fw =
s->awidth >> 1;
1363 int fh =
s->aheight >> 1;
1373 for (
int plane = 1; plane < 3; plane++) {
1374 int off = !
avg ? (y >> 1) * frame_linesize[plane] + (x >> 1) : 0;
1375 if (
check_pos(x >> 1, y >> 1, cw, ch, fw, fh, dx, dy, 0, 1, 0, 1)) {
1378 frame_linesize[plane],
1379 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1380 ref->linesize[plane],
1384 s->vdsp.emulated_edge_mc(buf,
1385 ref->data[plane] + ((y >> 1) + dy) *
ref->linesize[plane] + (x >> 1) + dx,
1386 40,
ref->linesize[plane],
1388 (x >> 1) + dx, (y >> 1) + dy,
1396 static void avg_plane(uint8_t *
dst,
int dst_stride,
const uint8_t *
src,
int src_stride,
int w,
int h)
1398 for (
int j = 0; j <
h; j++)
1399 for (
int i = 0;
i <
w;
i++)
1400 dst[j*dst_stride +
i] = (
dst[j*dst_stride +
i] +
src[j*src_stride +
i]) >> 1;
1403 static void avg(
AVFrame *
frame, uint8_t * prev_frame_data[3],
int prev_frame_linesize[3],
int x,
int y,
int w,
int h)
1405 for (
int plane = 0; plane < 3; plane++) {
1406 int shift = !plane ? 0 : 1;
1408 prev_frame_data[plane], prev_frame_linesize[plane],
1423 return (v * q + 8) >> 4;
1431 return inval &&
get_bits1(gb) ? -inval : inval;
1435 int esc_bits = esc_sym - 23;
1436 val += (1 << esc_bits) +
get_bits(gb, esc_bits) + 22;
1483 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1484 int grp0 = sym0 >> 3;
1490 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1494 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1498 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1505 int sym0 =
get_vlc2(gb, vlcs->
l0[!is_luma], 9, 2);
1506 int grp0 = (sym0 >> 3);
1512 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1516 int grp =
get_vlc2(gb, vlcs->
l12[!is_luma], 9, 2);
1520 int grp =
get_vlc2(gb, vlcs->
l3[!is_luma], 9, 2);
1533 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1534 for (
int i = 0;
i < 16;
i++)
1538 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1539 for (
int i = 0;
i < 4;
i++)
1540 if ((cbp >> (16 +
i)) & 1)
1543 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1544 for (
int i = 0;
i < 4;
i++)
1545 if ((cbp >> (20 +
i)) & 1)
1555 static void decode_cu_8x8(
GetBitContext * gb,
int is_intra,
int qp,
int sel_qp, int16_t * y_coeffs, int16_t * u_coeffs, int16_t * v_coeffs,
int ccbp,
int mode4x4)
1563 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*64);
1564 for (
int i = 0;
i < 4;
i++) {
1565 if ((ccbp >>
i) & 1) {
1571 offset = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1578 if ((ccbp >> 4) & 1) {
1579 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*16);
1583 if ((ccbp >> 5) & 1) {
1584 memset(v_coeffs, 0,
sizeof(u_coeffs[0])*16);
1597 memset(y_coeffs, 0,
sizeof(y_coeffs[0])*256);
1598 for (
int i = 0;
i < 16;
i++)
1599 if ((ccbp >>
i) & 1) {
1600 int off = (
i & 3) * 4 + (
i >> 2) * 4 * 16;
1604 memset(u_coeffs, 0,
sizeof(u_coeffs[0])*64);
1605 for (
int i = 0;
i < 4;
i++)
1606 if ((ccbp >> (16 +
i)) & 1) {
1607 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1614 memset(v_coeffs, 0,
sizeof(v_coeffs[0])*64);
1615 for (
int i = 0;
i < 4;
i++)
1616 if ((ccbp >> (20 +
i)) & 1) {
1617 int off = (
i & 1) * 4 + (
i & 2) * 2 * 8;
1627 int sym0 =
get_vlc2(gb, vlc[0], 9, 2);
1628 int sym1 =
get_vlc2(gb, vlc[1], 9, 2);
1629 int sym2 =
get_vlc2(gb, vlc[2], 9, 2);
1630 int sym3 =
get_vlc2(gb, vlc[3], 9, 2);
1632 + ((sym0 & 0x03) << 0)
1633 + ((sym0 & 0x0C) << 2)
1634 + ((sym0 & 0x10) << 12)
1635 + ((sym0 & 0x20) << 15)
1636 + ((sym1 & 0x03) << 2)
1637 + ((sym1 & 0x0C) << 4)
1638 + ((sym1 & 0x10) << 13)
1639 + ((sym1 & 0x20) << 16)
1640 + ((sym2 & 0x03) << 8)
1641 + ((sym2 & 0x0C) << 10)
1642 + ((sym2 & 0x10) << 14)
1643 + ((sym2 & 0x20) << 17)
1644 + ((sym3 & 0x03) << 10)
1645 + ((sym3 & 0x0C) << 12)
1646 + ((sym3 & 0x10) << 15)
1647 + ((sym3 & 0x20) << 18);
1661 int size = 1 << log_size;
1662 int split,
ret, ttype, count, is_intra, cu_pos, subset, cbp8, imode, split_i4x4, num_clusters, cl_cbp, super_cbp, mv_x, mv_y, mv_pos;
1663 int16_t y_coeffs[16*16], u_coeffs[8*8], v_coeffs[8*8];
1666 if (xpos >=
s->awidth || ypos >=
s->aheight)
1684 cu.
pu_pos = (xpos >> 3) + (ypos >> 3) *
s->pu_stride;
1685 cu.
blk_pos = (xpos >> 2) + (ypos >> 2) *
s->blk_stride;
1692 for (
int i = 0;
i < 4;
i++)
1694 else if (
size <= 32)
1702 for (
int i = 0;
i < count;
i++)
1717 imode =
s->blk_info[cu.
blk_pos].imode;
1719 int off = ypos *
frame->linesize[0] + xpos;
1724 for (
int plane = 1; plane < 3; plane++) {
1725 int off = (ypos >> 1) *
frame->linesize[plane] + (xpos >> 1);
1734 mv_pos = mv_y *
s->blk_stride + mv_x;
1736 for (
int part_no = 0; part_no < count; part_no++) {
1741 mv =
s->blk_info[mv_pos].mv;
1748 if (!(
mv.mvref & 2)) {
1749 if (!
s->last_frame[
LAST_PIC]->data[0]) {
1755 if (!
s->last_frame[
NEXT_PIC]->data[0]) {
1786 else if (
size >= 32)
1788 else if (
size == 16)
1794 if (is_intra && qp >= 32)
1796 cu_pos = ((xpos & 63) >> 3) + ((ypos & 63) >> 3) * 8;
1800 subset = is_intra ? 0 : 2;
1805 for (
int y = 0; y < 4; y++)
1806 for (
int x = 0; x < 4; x++) {
1808 if ((cbp16 >>
i) & 1) {
1809 int off = (ypos + y * 4)*
frame->linesize[0] + xpos + x * 4;
1811 thread->
coded_blk[cu_pos + (y/2)*8 + (x/2)] = 1;
1814 for (
int y = 0; y < 2; y++)
1815 for (
int x = 0; x < 2; x++) {
1817 int xoff = (xpos >> 1) + x * 4;
1818 int yoff = (ypos >> 1) + y * 4;
1819 if ((cbp16 >> (16 +
i)) & 1) {
1820 int off = yoff *
frame->linesize[1] + xoff;
1822 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1824 if ((cbp16 >> (20 +
i)) & 1) {
1825 int off = yoff *
frame->linesize[2] + xoff;
1827 thread->
coded_blk[cu_pos + y*8 + x] = 1;
1835 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 1);
1837 for (
int i = 0;
i < 4;
i++) {
1838 int xoff = (
i & 1) << 2;
1839 int yoff = (
i & 2) << 1;
1841 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1842 int imode =
s->blk_info[cu.
blk_pos + (
i >> 1) *
s->blk_stride + (
i & 1)].imode;
1847 if ((cbp8 >>
i) & 1) {
1848 int off = (ypos + yoff) *
frame->linesize[0] + xpos + xoff;
1852 if ((cbp8 >> 4) & 1) {
1853 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1856 if ((cbp8 >> 5) & 1) {
1857 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1863 subset = is_intra ? 1 : 3;
1867 decode_cu_8x8(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, cbp8, 0);
1869 int off = ypos *
frame->linesize[0] + xpos;
1872 if ((cbp8 >> 4) & 1) {
1873 int off = (ypos >> 1) *
frame->linesize[1] + (xpos >> 1);
1876 if ((cbp8 >> 5) & 1) {
1877 int off = (ypos >> 1) *
frame->linesize[2] + (xpos >> 1);
1883 subset = is_intra ? 1 : 3;
1884 num_clusters =
size >> 4;
1885 cl_cbp =
get_bits(gb, num_clusters * num_clusters);
1886 for (
int y = 0; y < num_clusters; y++) {
1887 for (
int x = 0; x < num_clusters; x++) {
1888 if (!((cl_cbp >> (y*num_clusters + x)) & 1))
1890 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 0] = 1;
1891 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 1] = 1;
1892 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 8] = 1;
1893 thread->
coded_blk[cu_pos + y*2*8 + x*2 + 9] = 1;
1896 decode_cu_16x16(gb, is_intra, qp, sel_qp, y_coeffs, u_coeffs, v_coeffs, super_cbp);
1897 if (super_cbp & 0xFFFF) {
1898 int off = (ypos + y * 16) *
frame->linesize[0] + xpos + x * 16;
1901 if ((super_cbp >> 16) & 0xF) {
1902 int off = ((ypos >> 1) + y * 8) *
frame->linesize[1] + (xpos >> 1) + x * 8;
1905 if ((super_cbp >> 20) & 0xF) {
1906 int off = ((ypos >> 1) + y * 8) *
frame->linesize[2] + (xpos >> 1) + x * 8;
1920 return (ypos >> 2) *
s->dblk_stride + (xpos >> 2);
1926 int dsize =
size >> 2;
1927 int dval = (q << 2) + strength;
1929 for (
int x = 0; x < dsize; x++) {
1930 s->top_str[
pos + x] = dval;
1931 s->top_str[
pos + (dsize - 1)*
s->dblk_stride + x] = dval;
1934 for (
int y = 0; y < dsize; y++) {
1935 s->left_str[
pos + y*
s->dblk_stride] = dval;
1936 s->left_str[
pos + y*
s->dblk_stride + dsize - 1] = dval;
1942 return s->top_str[
pos] & 3;
1947 return s->left_str[
pos] & 3;
1952 s->top_str[
pos] |= strength;
1957 s->left_str[
pos] |= strength;
1962 int blk_pos = (ypos >> 2) *
s->blk_stride + (xpos >> 2);
1965 for (
int i = 0;
i <
size;
i++)
1969 for (
int i = 0;
i <
size;
i++)
1974 #define STRENGTH(el, lim) (FFABS(el) < (lim) ? 3 : 1)
1975 #define CLIP_SYMM(a, b) av_clip(a, -(b), b)
1979 int16_t diff_q1q0[4];
1980 int16_t diff_p1p0[4];
1981 int str_p, str_q, msum, maxprod, weak;
1983 for (
int i = 0;
i < 4;
i++) {
1988 str_p =
STRENGTH(diff_q1q0[0] + diff_q1q0[1] + diff_q1q0[2] + diff_q1q0[3], lim2);
1989 str_q =
STRENGTH(diff_p1p0[0] + diff_p1p0[1] + diff_p1p0[2] + diff_p1p0[3], lim2);
1991 if (str_p + str_q <= 2)
1994 msum = (mode1 + mode2 + str_q + str_p) >> 1;
1995 if (str_q == 1 || str_p == 1) {
2003 for (
int y = 0; y < 4; y++) {
2006 if (diff_p0q0 &&
result <= maxprod) {
2013 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_p0q0 + 4) >> 3;
2018 if (str_p != 1 &&
FFABS(diff_q1q2) <= (lim2 >> 2)) {
2019 int diff = (diff_q1q0[y] + diff_q1q2 -
delta) >> 1;
2023 if (str_q != 1 &&
FFABS(diff_p1p2) <= (lim2 >> 2)) {
2024 int diff = (diff_p1p0[y] + diff_p1p2 +
delta) >> 1;
2037 int str_q =
STRENGTH(diff_q, lim2);
2038 int str_p =
STRENGTH(diff_p, lim2);
2039 int msum, maxprod, weak;
2041 if (str_p + str_q <= 2)
2044 msum = (mode1 + mode2 + str_q + str_p) >> 1;
2045 if (str_q == 1 || str_p == 1) {
2053 for (
int y = 0; y < 2; y++) {
2056 if (diff_pq &&
result <= maxprod) {
2061 int diff_strg = (
dst[-2*
step] -
dst[
step] + 4 * diff_pq + 4) >> 3;
2073 int qp_l = dblk_l >> 2;
2074 int str_l = dblk_l & 3;
2075 int qp_r = dblk_r >> 2;
2076 int str_r = dblk_r & 3;
2079 int mode_l = str_l ? dl_l[str_l - 1] : 0;
2080 int mode_r = str_r ? dl_r[str_r - 1] : 0;
2082 int lim2 = dl_r[3] * 4;
2085 if ((str_l | str_r) >= 2 && deblock_chroma)
2086 for (
int plane = 1; plane < 3; plane++)
2092 int qp_t = dblk_t >> 2;
2093 int str_t = dblk_t & 3;
2094 int qp_d = dblk_d >> 2;
2095 int str_d = dblk_d & 3;
2098 int mode_t = str_t ? dl_t[str_t - 1] : 0;
2099 int mode_d = str_d ? dl_d[str_d - 1] : 0;
2101 int lim2 = dl_d[3] * 4;
2104 if ((str_t | str_d) >= 2 && deblock_chroma)
2105 for (
int plane = 1; plane < 3; plane++)
2113 int str_l =
s->left_str[dblkpos -
s->dblk_stride - 1];
2114 int str_r =
s->left_str[dblkpos -
s->dblk_stride];
2115 if ((str_l | str_r) & 3)
2119 int str_l =
s->left_str[dblkpos - 1];
2120 int str_r =
s->left_str[dblkpos];
2121 if ((str_l | str_r) & 3)
2124 if (ypos + 8 >=
s->aheight) {
2125 int str_l =
s->left_str[dblkpos +
s->dblk_stride - 1];
2126 int str_r =
s->left_str[dblkpos +
s->dblk_stride];
2127 if ((str_l | str_r) & 3)
2133 int str_t =
s->top_str[dblkpos -
s->dblk_stride - 1];
2134 int str_d =
s->top_str[dblkpos - 1];
2135 if ((str_t | str_d) & 3)
2139 int str_t =
s->top_str[dblkpos -
s->dblk_stride];
2140 int str_d =
s->top_str[dblkpos];
2141 if ((str_t | str_d) & 3)
2144 if (xpos + 8 >=
s->awidth) {
2145 int str_t =
s->top_str[dblkpos -
s->dblk_stride + 1];
2146 int str_d =
s->top_str[dblkpos + 1];
2147 if ((str_t | str_d) & 3)
2155 for (
int x = 0; x < size >> 3; x++)
2158 for (
int y = 1; y < size >> 3; y++)
2164 int pu_pos, tsize, ntiles;
2167 if (xpos >=
s->awidth || ypos >=
s->aheight)
2171 int hsize = 1 << (log_size - 1);
2180 pu_pos = (ypos >> 3) *
s->pu_stride + (xpos >> 3);
2181 cu_type =
s->pu_info[pu_pos].cu_type;
2183 case 3: tsize = 3;
break;
2184 case 4: tsize = cu_type &&
s->pu_info[pu_pos].pu_type ? 3 : 4;
break;
2186 case 6: tsize = 4;
break;
2188 ntiles = 1 << (log_size - tsize);
2190 for (
int ty = 0; ty < ntiles; ty++)
2191 for (
int tx = 0; tx < ntiles; tx++) {
2192 int x = xpos + (tx << tsize);
2193 int y = ypos + (ty << tsize);
2194 int cu_pos = ((y & 63) >> 3) * 8 + ((x & 63) >> 3);
2213 switch (qp_off_type) {
2218 return val != 2 ?
val : -1;
2226 return -((
val & 1) + 1);
2234 case 1:
return qp <= 25 ? qp + 5 : qp;
2251 int qp, sel_qp,
ret;
2263 for (
int cu_x = 0; cu_x <
s->cu_width; cu_x++) {
2302 if (avpkt->
size == 0) {
2310 if (avpkt->
size < 9)
2313 header_size = avpkt->
data[0] * 8 + 9;
2314 if (avpkt->
size < header_size)
2337 s->last_frame[
CUR_PIC]->pict_type =
s->pict_type;
2344 if (!
s->last_frame[
CUR_PIC]->data[0])
2353 for (
int i = 0;
i <
s->cu_height;
i++) {
2354 if (header_size + ofs >= avpkt->
size)
2356 s->slice[
i].data = avpkt->
data + header_size + ofs;
2357 s->slice[
i].data_size =
FFMIN(
s->slice[
i].size, avpkt->
size - header_size - ofs);
2358 ofs +=
s->slice[
i].size;
2370 else if (
s->last_frame[
LAST_PIC]->data[0])
2384 s->ref_pts[0] =
s->ref_pts[1];
2385 s->ref_pts[1] = avpkt->
pts;
2387 s->ref_ts[0] =
s->ref_ts[1];
2388 s->ref_ts[1] =
s->ts;
2390 if (
s->ref_pts[1] >
s->ref_pts[0] &&
s->ref_ts[1] >
s->ref_ts[0])
2391 s->ts_scale = (
s->ref_pts[1] -
s->ref_pts[0]) / (
s->ref_ts[1] -
s->ref_ts[0]);
2393 frame->pts =
s->ref_pts[0] + (
s->ts -
s->ref_ts[0]) *
s->ts_scale;
2403 for (
int i = 0;
i < 3;
i++)
2411 for (
int i = 0;
i < 3;
i++)
2420 for (
int i = 0;
i <
s->nb_progress;
i++)
static void fill_mv_skip_cand(RV60Context *s, const CUContext *cu, unique_list_mvinfo *skip_cand, int size)
static void filter_luma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static const uint8_t skip_mv_ref[4]
#define AV_LOG_WARNING
Something somehow does not look correct.
static void decode_2x2_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_dc, int q_ac)
void ff_thread_progress_report(ThreadProgress *pro, int n)
This function is a no-op in no-op mode; otherwise it notifies other threads that a certain level of p...
#define FF_CODEC_CAP_INIT_CLEANUP
The codec allows calling the close function for deallocation even if the init function returned a fai...
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
static void rv60_flush(AVCodecContext *avctx)
static int pu_is_intra(const PUInfo *pu)
ThreadProgress is an API to easily notify other threads about progress of any kind as long as it can ...
static int deblock_get_top_strength(const RV60Context *s, int pos)
static void deblock(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int size, int dpos)
static int pred_angle(const IntraPredContext *p, uint8_t *dst, int stride, int size, int imode, int filter)
void ff_rv60_idct8x8_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void read_mv(GetBitContext *gb, MV *mv)
static unsigned int get_bits_long(GetBitContext *s, int n)
Read 0-32 bits.
static void decode_cu_16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp)
static const int8_t mv[256][2]
#define FILTER_BLOCK(dst, dst_stride, src, src_stride, src_y_ofs, w, h, cond, step)
static int get_bits_count(const GetBitContext *s)
static void deblock_edge_ver(AVFrame *frame, int xpos, int ypos, int dblk_l, int dblk_r, int deblock_chroma)
static const VLCElem * cbp8_vlc[7][4]
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
static av_cold void rv60_init_static_data(void)
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int mvinfo_matches_forward(const MVInfo *a, const MVInfo *b)
static void mc(RV60Context *s, uint8_t *frame_data[3], int frame_linesize[3], const AVFrame *ref, int x, int y, int w, int h, MV mv, int avg)
static void filter_weak(uint8_t *dst, const uint8_t *src, int size)
const FFCodec ff_rv60_decoder
void(* filter)(uint8_t *src, int stride, int qscale)
static const uint8_t rv60_cbp8_lens[7][4][64]
static int update_dimensions_clear_info(RV60Context *s, int width, int height)
static void decode_4x4_block(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_ac)
static void decode_cu_4x4in16x16(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int cbp)
static int ipm_compar(const void *a, const void *b)
int ff_set_dimensions(AVCodecContext *s, int width, int height)
Check that the provided frame dimensions are valid and set them on the codec context.
static int deblock_get_pos(RV60Context *s, int xpos, int ypos)
static int deblock_get_left_strength(const RV60Context *s, int pos)
static void populate_ipred(const RV60Context *s, CUContext *cu, const uint8_t *src, int stride, int xoff, int yoff, int size, int is_luma)
uint8_t avg_buffer[64 *64+32 *32 *2]
static void skip_bits(GetBitContext *s, int n)
static unsigned int get_bits(GetBitContext *s, int n)
Read 1-25 bits.
static int has_left_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
AVCodec p
The public AVCodec.
enum AVDiscard skip_frame
Skip decoding for selected frames.
static void deblock_set_top_strength(RV60Context *s, int pos, int strength)
static int get_skip_mv_index(enum MVRefEnum mvref)
static void deblock_edge_hor(AVFrame *frame, int xpos, int ypos, int dblk_t, int dblk_d, int deblock_chroma)
const h264_weight_func weight
static double val(void *priv, double ch)
av_cold void ff_videodsp_init(VideoDSPContext *ctx, int bpc)
static void get_mv_dimensions(Dimensions *dim, enum PUType pu_type, int part_no, int size)
static void pred_plane(const IntraPredContext *p, uint8_t *dst, int stride, int size)
AVFrame * av_frame_alloc(void)
Allocate an AVFrame and set its fields to default values.
static void derive_deblock_strength(RV60Context *s, int xpos, int ypos, int size)
static int ff_thread_once(char *control, void(*routine)(void))
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
#define FF_ARRAY_ELEMS(a)
static int init_get_bits8(GetBitContext *s, const uint8_t *buffer, int byte_size)
Initialize GetBitContext.
static int quant(int v, int q)
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
For static VLCs, the number of bits can often be hardcoded at each get_vlc2() callsite.
static int decode_slice(AVCodecContext *avctx, void *tdata, int cu_y, int threadnr)
#define FF_CODEC_DECODE_CB(func)
static const uint8_t rv60_deblock_limits[32][4]
void * av_realloc_array(void *ptr, size_t nmemb, size_t size)
static const uint8_t rv60_edge2[4]
uint8_t cu_split[1+4+16+64]
#define MK_UNIQUELIST(name, type, max_size)
#define av_assert0(cond)
assert() equivalent, that is always enabled.
static const uint8_t rv60_cbp16_lens[7][3][4][64]
static void predict_mv(const RV60Context *s, MVInfo *dst, int mv_x, int mv_y, int mv_w, const MVInfo *src)
static int mv_is_forward(enum MVRefEnum mvref)
static const uint8_t rv60_ipred_angle[9]
static int mv_is_ref0(enum MVRefEnum mvref)
@ AV_PIX_FMT_YUV420P
planar YUV 4:2:0, 12bpp, (1 Cr & Cb sample per 2x2 Y samples)
static void mv_pred(MV *ret, MV a, MV b, MV c)
static void deblock8x8(const RV60Context *s, AVFrame *frame, int xpos, int ypos, int dblkpos)
#define CODEC_LONG_NAME(str)
static int read_frame_header(RV60Context *s, GetBitContext *gb, int *width, int *height)
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
@ AVDISCARD_ALL
discard all
static void decode_4x4_block_dc(GetBitContext *gb, const CoeffVLCs *vlcs, int is_luma, int16_t *coeffs, int stride, int q_dc, int q_ac)
static void ipred_init(IntraPredContext *i)
void ff_thread_progress_await(const ThreadProgress *pro_c, int n)
This function is a no-op in no-op mode; otherwise it waits until other threads have reached a certain...
static int mvinfo_is_deblock_cand(const MVInfo *a, const MVInfo *b)
and forward the result(frame or status change) to the corresponding input. If nothing is possible
static int decode_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, GetBitContext *gb, int xpos, int ypos, int log_size, int qp, int sel_qp)
static const uint8_t rv60_chroma_quant_ac[32]
static int has_ver_split(enum PUType pu_type)
static VLCElem table_data[129148]
static unsigned int get_bits1(GetBitContext *s)
@ AV_PICTURE_TYPE_I
Intra.
static int read_slice_sizes(RV60Context *s, GetBitContext *gb)
static int has_hor_split(enum PUType pu_type)
static void decode_2x2(GetBitContext *gb, const CoeffVLCs *vlcs, int16_t *coeffs, int stride, int block2, int dsc, int q_ac)
static int has_top_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static const uint8_t rv60_dsc_to_lx[][4]
static const VLCElem * gen_vlc(const uint8_t *bits, int size, VLCInitState *state)
static av_always_inline int get_vlc2(GetBitContext *s, const VLCElem *table, int bits, int max_depth)
Parse a vlc code.
static const CoeffLens rv60_intra_lens[5]
static void luma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int cx, int cy)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static void pred_dc(const IntraPredContext *p, uint8_t *dst, int stride, int size, int filter)
static int get_unary(GetBitContext *gb, int stop, int len)
Get unary code of limited length.
static void read_mv_info(RV60Context *s, GetBitContext *gb, MVInfo *mvinfo, int size, enum PUType pu_type)
@ AVDISCARD_NONKEY
discard all frames except keyframes
int ff_get_buffer(AVCodecContext *avctx, AVFrame *frame, int flags)
Get a buffer for a frame.
int(* init)(AVBSFContext *ctx)
#define AV_CODEC_CAP_DR1
Codec uses get_buffer() or get_encode_buffer() for allocating buffers and supports custom allocators.
static const uint8_t rv60_avail_mask[64]
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled top and top right vectors is used as motion vector prediction the used motion vector is the sum of the predictor and(mvx_diff, mvy_diff) *mv_scale Intra DC Prediction block[y][x] dc[1]
static const uint16_t rv60_ipred_inv_angle[9]
int av_frame_ref(AVFrame *dst, const AVFrame *src)
Set up a new reference to the data described by the source frame.
static void filter_bilin32(uint8_t *dst, int v0, int v1, int size)
static void build_coeff_vlc(const CoeffLens *lens, CoeffVLCs *vlc, int count, VLCInitState *state)
static int shift(int a, int b)
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
static int rv60_decode_frame(AVCodecContext *avctx, AVFrame *frame, int *got_frame, AVPacket *avpkt)
static int pu_type_num_parts(enum PUType pu_type)
static void add_if_valid(unique_list_mvinfo *skip_cand, const MVInfo *mvi)
static int get_interleaved_se_golomb(GetBitContext *gb)
static const CoeffLens rv60_inter_lens[7]
static void chroma_mc(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h, int x, int y)
#define FF_THREAD_SLICE
Decode more than one part of a single frame at once.
static void filter_chroma_edge(uint8_t *dst, int step, int stride, int mode1, int mode2, int lim1, int lim2)
static av_cold int rv60_decode_end(AVCodecContext *avctx)
@ AV_PICTURE_TYPE_NONE
Undefined.
FrameData * frame_data(AVFrame *frame)
Get our axiliary frame data attached to the frame, allocating it if needed.
static av_always_inline int diff(const struct color_info *a, const struct color_info *b, const int trans_thresh)
static char * split(char *message, char delim)
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
int av_reallocp_array(void *ptr, size_t nmemb, size_t size)
Allocate, reallocate an array through a pointer to a pointer.
static CoeffVLCs intra_coeff_vlc[5]
#define AV_CODEC_CAP_SLICE_THREADS
Codec supports slice-based (or partition-based) multithreading.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
static void pred_hor_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
struct ThreadProgress * progress
static void skip_bits1(GetBitContext *s)
static void deblock_cu_r(RV60Context *s, AVFrame *frame, ThreadContext *thread, int xpos, int ypos, int log_size, int qp)
static int calc_sel_qp(int osvquant, int qp)
static int read_intra_mode(GetBitContext *gb, int *param)
#define AV_LOG_INFO
Standard information.
static int decode_super_cbp(GetBitContext *gb, const VLCElem *vlc[4])
#define STRENGTH(el, lim)
static const uint8_t rv60_candidate_intra_angles[6]
static int decode_cbp8(GetBitContext *gb, int subset, int qp)
#define i(width, name, range_min, range_max)
int64_t pts
Presentation timestamp in AVStream->time_base units; the time at which the decompressed packet will b...
static int has_left_down_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
av_cold int ff_thread_progress_init(ThreadProgress *pro, int init_mode)
Initialize a ThreadProgress.
void av_frame_move_ref(AVFrame *dst, AVFrame *src)
Move everything contained in src to dst and reset src.
void av_frame_unref(AVFrame *frame)
Unreference all the buffers referenced by frame and reset the frame fields.
static int has_top_right_block(const RV60Context *s, int xpos, int ypos, int dx, int dy, int size)
static void avg(AVFrame *frame, uint8_t *prev_frame_data[3], int prev_frame_linesize[3], int x, int y, int w, int h)
const char * name
Name of the codec implementation.
void ff_rv60_idct4x4_add(const int16_t *block, uint8_t *dst, int dst_stride)
static void pred_ver_angle(uint8_t *dst, int stride, int size, int weight, const uint8_t *src)
static av_cold int rv60_decode_init(AVCodecContext *avctx)
static int decode_coeff(GetBitContext *gb, const CoeffVLCs *vlcs, int inval, int val)
enum AVPixelFormat pix_fmt
Pixel format, see AV_PIX_FMT_xxx.
static int mv_is_backward(enum MVRefEnum mvref)
static int reconstruct_intra(const RV60Context *s, const CUContext *cu, int size, int sub)
static int mvinfo_matches_backward(const MVInfo *a, const MVInfo *b)
#define FFSWAP(type, a, b)
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int progress_init(RV60Context *s, unsigned count)
static const uint8_t * align_get_bits(GetBitContext *s)
static CoeffVLCs inter_coeff_vlc[7]
av_cold void ff_thread_progress_destroy(ThreadProgress *pro)
Destroy a ThreadProgress.
static int decode_cbp16(GetBitContext *gb, int subset, int qp)
main external API structure.
@ AV_PICTURE_TYPE_B
Bi-dir predicted.
static void get_next_mv(const RV60Context *s, const Dimensions *dim, enum PUType pu_type, int part_no, int *mv_pos, int *mv_x, int *mv_y)
static int ref[MAX_W *MAX_W]
#define AV_CODEC_CAP_DELAY
Encoder or decoder requires flushing with NULL input at the end in order to give the complete and cor...
static void ff_thread_progress_reset(ThreadProgress *pro)
Reset the ThreadProgress.progress counter; must only be called if the ThreadProgress is not in use in...
static void deblock_set_strength(RV60Context *s, int xpos, int ypos, int size, int q, int strength)
@ AV_PICTURE_TYPE_P
Predicted.
static const VLCElem * ff_vlc_init_tables(VLCInitState *state, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, int flags)
static void deblock_set_left_strength(RV60Context *s, int pos, int strength)
static const uint8_t rv60_chroma_quant_dc[32]
static int read_qp_offset(GetBitContext *gb, int qp_off_type)
static int read_code012(GetBitContext *gb)
static int check_pos(int x, int y, int cw, int ch, int w, int h, int dx, int dy, int e0, int e1, int e2, int e3)
static const uint8_t rv60_qp_to_idx[64]
#define VLC_INIT_STATE(_table)
static int get_c4x4_set(int qp, int is_intra)
This structure stores compressed data.
static void avg_plane(uint8_t *dst, int dst_stride, const uint8_t *src, int src_stride, int w, int h)
void ff_rv60_idct16x16_add(const int16_t *block, uint8_t *dst, int dst_stride)
#define AVERROR_INVALIDDATA
Invalid data found when processing input.
static void decode_cu_8x8(GetBitContext *gb, int is_intra, int qp, int sel_qp, int16_t *y_coeffs, int16_t *u_coeffs, int16_t *v_coeffs, int ccbp, int mode4x4)
@ AVDISCARD_NONREF
discard all non reference
static const uint8_t rv60_edge1[4]
static void reconstruct(RV60Context *s, const CUContext *cu, int size)
static const VLCElem * cbp16_vlc[7][3][4]
static const int8_t frame_types[4]
static const uint16_t rv60_quants_b[32]