FFmpeg
vsrc_gradients.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2020 Paul B Mahol
3  *
4  * This file is part of FFmpeg.
5  *
6  * FFmpeg is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * FFmpeg is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with FFmpeg; if not, write to the Free Software
18  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19  */
20 
21 #include "avfilter.h"
22 #include "filters.h"
23 #include "video.h"
24 #include "libavutil/imgutils.h"
25 #include "libavutil/opt.h"
26 #include "libavutil/lfg.h"
27 #include "libavutil/random_seed.h"
28 #include <float.h>
29 #include <math.h>
30 
31 typedef struct GradientsContext {
32  const AVClass *class;
33  int w, h;
34  int type;
37  int64_t duration; ///< duration expressed in microseconds
38  float speed;
39  float angle;
40 
41  uint8_t color_rgba[8][4];
42  float color_rgbaf[8][4];
43  int nb_colors;
44  int x0, y0, x1, y1;
45  float fx0, fy0, fx1, fy1;
46 
48 
50  int (*draw_slice)(AVFilterContext *ctx, void *arg, int job, int nb_jobs);
52 
53 #define OFFSET(x) offsetof(GradientsContext, x)
54 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
55 #define VFT AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
56 
57 static const AVOption gradients_options[] = {
58  {"size", "set frame size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="640x480"}, 0, 0, FLAGS },
59  {"s", "set frame size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str="640x480"}, 0, 0, FLAGS },
60  {"rate", "set frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS },
61  {"r", "set frame rate", OFFSET(frame_rate), AV_OPT_TYPE_VIDEO_RATE, {.str="25"}, 0, INT_MAX, FLAGS },
62  {"c0", "set 1st color", OFFSET(color_rgba[0]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
63  {"c1", "set 2nd color", OFFSET(color_rgba[1]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
64  {"c2", "set 3rd color", OFFSET(color_rgba[2]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
65  {"c3", "set 4th color", OFFSET(color_rgba[3]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
66  {"c4", "set 5th color", OFFSET(color_rgba[4]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
67  {"c5", "set 6th color", OFFSET(color_rgba[5]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
68  {"c6", "set 7th color", OFFSET(color_rgba[6]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
69  {"c7", "set 8th color", OFFSET(color_rgba[7]), AV_OPT_TYPE_COLOR, {.str = "random"}, 0, 0, FLAGS },
70  {"x0", "set gradient line source x0", OFFSET(x0), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
71  {"y0", "set gradient line source y0", OFFSET(y0), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
72  {"x1", "set gradient line destination x1", OFFSET(x1), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
73  {"y1", "set gradient line destination y1", OFFSET(y1), AV_OPT_TYPE_INT, {.i64=-1}, -1, INT_MAX, FLAGS },
74  {"nb_colors", "set the number of colors", OFFSET(nb_colors), AV_OPT_TYPE_INT, {.i64=2}, 2, 8, FLAGS },
75  {"n", "set the number of colors", OFFSET(nb_colors), AV_OPT_TYPE_INT, {.i64=2}, 2, 8, FLAGS },
76  {"seed", "set the seed", OFFSET(seed), AV_OPT_TYPE_INT64, {.i64=-1}, -1, UINT32_MAX, FLAGS },
77  {"duration", "set video duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64=-1}, -1, INT64_MAX, FLAGS },
78  {"d", "set video duration", OFFSET(duration), AV_OPT_TYPE_DURATION, {.i64=-1}, -1, INT64_MAX, FLAGS },
79  {"speed", "set gradients rotation speed", OFFSET(speed), AV_OPT_TYPE_FLOAT,{.dbl=0.01}, 0, 1, VFT },
80  {"type", "set gradient type", OFFSET(type), AV_OPT_TYPE_INT, {.i64=0}, 0, 4, VFT, .unit = "type" },
81  {"t", "set gradient type", OFFSET(type), AV_OPT_TYPE_INT, {.i64=0}, 0, 4, VFT, .unit = "type" },
82  { "linear", "set linear gradient", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, VFT, .unit = "type" },
83  { "radial", "set radial gradient", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, VFT, .unit = "type" },
84  { "circular", "set circular gradient", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, VFT, .unit = "type" },
85  { "spiral", "set spiral gradient", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, VFT, .unit = "type" },
86  { "square", "set square gradient", 0, AV_OPT_TYPE_CONST, {.i64=4}, 0, 0, VFT, .unit = "type" },
87  {NULL},
88 };
89 
90 AVFILTER_DEFINE_CLASS(gradients);
91 
92 static float lerpf(float a, float b, float x)
93 {
94  const float y = 1.f - x;
95 
96  return a * y + b * x;
97 }
98 
99 static uint32_t lerp_color(uint8_t c0[4], uint8_t c1[4], float x)
100 {
101  const float y = 1.f - x;
102 
103  return (lrintf(c0[0] * y + c1[0] * x)) << 0 |
104  (lrintf(c0[1] * y + c1[1] * x)) << 8 |
105  (lrintf(c0[2] * y + c1[2] * x)) << 16 |
106  (lrintf(c0[3] * y + c1[3] * x)) << 24;
107 }
108 
109 static uint64_t lerp_color16(uint8_t c0[4], uint8_t c1[4], float x)
110 {
111  const float y = 1.f - x;
112 
113  return ((uint64_t)llrintf((c0[0] * y + c1[0] * x) * 256)) << 0 |
114  ((uint64_t)llrintf((c0[1] * y + c1[1] * x) * 256)) << 16 |
115  ((uint64_t)llrintf((c0[2] * y + c1[2] * x) * 256)) << 32 |
116  ((uint64_t)llrintf((c0[3] * y + c1[3] * x) * 256)) << 48;
117 }
118 
119 static uint32_t lerp_colors(uint8_t arr[8][4], int nb_colors, int nb_wrap_colors, float step)
120 {
121  float scl;
122  int i, j;
123 
124  if (nb_colors == 1 || step <= 0.0) {
125  return arr[0][0] | (arr[0][1] << 8) | (arr[0][2] << 16) | (arr[0][3] << 24);
126  } else if (step >= 1.0) {
127  i = nb_colors - 1;
128  return arr[i][0] | (arr[i][1] << 8) | (arr[i][2] << 16) | (arr[i][3] << 24);
129  }
130 
131  scl = step * (nb_wrap_colors - 1);
132  i = floorf(scl);
133  j = i + 1;
134  if (i >= nb_colors - 1) {
135  i = nb_colors - 1;
136  j = 0;
137  }
138 
139  return lerp_color(arr[i], arr[j], scl - i);
140 }
141 
142 static uint64_t lerp_colors16(uint8_t arr[8][4], int nb_colors, int nb_wrap_colors, float step)
143 {
144  float scl;
145  int i, j;
146 
147  if (nb_colors == 1 || step <= 0.0) {
148  return ((uint64_t)arr[0][0] << 8) | ((uint64_t)arr[0][1] << 24) | ((uint64_t)arr[0][2] << 40) | ((uint64_t)arr[0][3] << 56);
149  } else if (step >= 1.0) {
150  i = nb_colors - 1;
151  return ((uint64_t)arr[i][0] << 8) | ((uint64_t)arr[i][1] << 24) | ((uint64_t)arr[i][2] << 40) | ((uint64_t)arr[i][3] << 56);
152  }
153 
154  scl = step * (nb_wrap_colors - 1);
155  i = floorf(scl);
156  j = i + 1;
157  if (i >= nb_colors - 1) {
158  i = nb_colors - 1;
159  j = 0;
160  }
161 
162  return lerp_color16(arr[i], arr[j], scl - i);
163 }
164 
165 static void lerp_colors32(float arr[8][4], int nb_colors,
166  int nb_wrap_colors, float step,
167  float *r, float *g, float *b, float *a)
168 {
169  float scl, x;
170  int i, j;
171 
172  if (nb_colors == 1 || step <= 0.0) {
173  *r = arr[0][0];
174  *g = arr[0][1];
175  *b = arr[0][2];
176  *a = arr[0][3];
177  return;
178  } else if (step >= 1.0) {
179  i = nb_colors - 1;
180  *r = arr[i][0];
181  *g = arr[i][1];
182  *b = arr[i][2];
183  *a = arr[i][3];
184  return;
185  }
186 
187  scl = step * (nb_wrap_colors - 1);
188  i = floorf(scl);
189  j = i + 1;
190  if (i >= nb_colors - 1) {
191  i = nb_colors - 1;
192  j = 0;
193  }
194  x = scl - i;
195 
196  *r = lerpf(arr[i][0], arr[j][0], x);
197  *g = lerpf(arr[i][1], arr[j][1], x);
198  *b = lerpf(arr[i][2], arr[j][2], x);
199  *a = lerpf(arr[i][3], arr[j][3], x);
200 }
201 
202 static float project(float origin_x, float origin_y,
203  float dest_x, float dest_y,
204  float point_x, float point_y, int type)
205 {
206  float op_x = point_x - origin_x;
207  float op_y = point_y - origin_y;
208  float od_x = dest_x - origin_x;
209  float od_y = dest_y - origin_y;
210  float op_x_od;
211  float od_s_q;
212 
213  switch (type) {
214  case 0:
215  od_s_q = od_x * od_x + od_y * od_y;
216  break;
217  case 1:
218  od_s_q = sqrtf(od_x * od_x + od_y * od_y);
219  break;
220  case 2:
221  case 3:
222  od_s_q = M_PI * 2.f;
223  break;
224  case 4:
225  od_s_q = fmaxf(fabsf(od_x), fabsf(od_y));
226  break;
227  }
228 
229  switch (type) {
230  case 0:
231  op_x_od = op_x * od_x + op_y * od_y;
232  break;
233  case 1:
234  op_x_od = sqrtf(op_x * op_x + op_y * op_y);
235  break;
236  case 2:
237  op_x_od = atan2f(op_x, op_y) + M_PI;
238  break;
239  case 3:
240  op_x_od = fmodf(atan2f(op_x, op_y) + M_PI + point_x / fmaxf(origin_x, dest_x), 2.f * M_PI);
241  break;
242  case 4:
243  op_x_od = fmaxf(fabsf(op_x), fabsf(op_y));
244  break;
245  }
246 
247  // Normalize and clamp range.
248  return av_clipf(op_x_od / od_s_q, 0.f, 1.f);
249 }
250 
251 static int draw_gradients_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
252 {
253  GradientsContext *s = ctx->priv;
254  AVFrame *frame = arg;
255  const int width = frame->width;
256  const int height = frame->height;
257  const int start = (height * job ) / nb_jobs;
258  const int end = (height * (job+1)) / nb_jobs;
259  const ptrdiff_t linesize = frame->linesize[0] / 4;
260  uint32_t *dst = (uint32_t *)frame->data[0] + start * linesize;
261  const int type = s->type;
262 
263  for (int y = start; y < end; y++) {
264  for (int x = 0; x < width; x++) {
265  float factor = project(s->fx0, s->fy0, s->fx1, s->fy1, x, y, type);
266  dst[x] = lerp_colors(s->color_rgba, s->nb_colors, s->nb_colors + (type >= 2 && type <= 3), factor);
267  }
268 
269  dst += linesize;
270  }
271 
272  return 0;
273 }
274 
275 static int draw_gradients_slice16(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
276 {
277  GradientsContext *s = ctx->priv;
278  AVFrame *frame = arg;
279  const int width = frame->width;
280  const int height = frame->height;
281  const int start = (height * job ) / nb_jobs;
282  const int end = (height * (job+1)) / nb_jobs;
283  const ptrdiff_t linesize = frame->linesize[0] / 8;
284  uint64_t *dst = (uint64_t *)frame->data[0] + start * linesize;
285  const int type = s->type;
286 
287  for (int y = start; y < end; y++) {
288  for (int x = 0; x < width; x++) {
289  float factor = project(s->fx0, s->fy0, s->fx1, s->fy1, x, y, type);
290  dst[x] = lerp_colors16(s->color_rgba, s->nb_colors, s->nb_colors + (type >= 2 && type <= 3), factor);
291  }
292 
293  dst += linesize;
294  }
295 
296  return 0;
297 }
298 
299 static int draw_gradients_slice32_planar(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
300 {
301  GradientsContext *s = ctx->priv;
302  AVFrame *frame = arg;
303  const int width = frame->width;
304  const int height = frame->height;
305  const int start = (height * job ) / nb_jobs;
306  const int end = (height * (job+1)) / nb_jobs;
307  const ptrdiff_t linesize_g = frame->linesize[0] / 4;
308  const ptrdiff_t linesize_b = frame->linesize[1] / 4;
309  const ptrdiff_t linesize_r = frame->linesize[2] / 4;
310  const ptrdiff_t linesize_a = frame->linesize[3] / 4;
311  float *dst_g = (float *)frame->data[0] + start * linesize_g;
312  float *dst_b = (float *)frame->data[1] + start * linesize_b;
313  float *dst_r = (float *)frame->data[2] + start * linesize_r;
314  float *dst_a = (float *)frame->data[3] + start * linesize_a;
315  const int type = s->type;
316 
317  for (int y = start; y < end; y++) {
318  for (int x = 0; x < width; x++) {
319  float factor = project(s->fx0, s->fy0, s->fx1, s->fy1, x, y, type);
320  lerp_colors32(s->color_rgbaf, s->nb_colors, s->nb_colors + (type >= 2 && type <= 3), factor,
321  &dst_r[x], &dst_g[x], &dst_b[x], &dst_a[x]);
322  }
323 
324  dst_g += linesize_g;
325  dst_b += linesize_b;
326  dst_r += linesize_r;
327  dst_a += linesize_a;
328  }
329 
330  return 0;
331 }
332 
333 static int config_output(AVFilterLink *outlink)
334 {
335  AVFilterContext *ctx = outlink->src;
336  FilterLink *l = ff_filter_link(outlink);
337  GradientsContext *s = ctx->priv;
339 
340  if (av_image_check_size(s->w, s->h, 0, ctx) < 0)
341  return AVERROR(EINVAL);
342 
343  outlink->w = s->w;
344  outlink->h = s->h;
345  outlink->time_base = av_inv_q(s->frame_rate);
346  outlink->sample_aspect_ratio = (AVRational) {1, 1};
347  l->frame_rate = s->frame_rate;
348  if (s->seed == -1)
349  s->seed = av_get_random_seed();
350  av_lfg_init(&s->lfg, s->seed);
351 
352  switch (desc->comp[0].depth) {
353  case 8:
354  s->draw_slice = draw_gradients_slice;
355  break;
356  case 16:
357  s->draw_slice = draw_gradients_slice16;
358  break;
359  case 32:
360  s->draw_slice = draw_gradients_slice32_planar;
361  break;
362  default:
363  return AVERROR_BUG;
364  }
365 
366  if (s->x0 < 0 || s->x0 >= s->w)
367  s->x0 = av_lfg_get(&s->lfg) % s->w;
368  if (s->y0 < 0 || s->y0 >= s->h)
369  s->y0 = av_lfg_get(&s->lfg) % s->h;
370  if (s->x1 < 0 || s->x1 >= s->w)
371  s->x1 = av_lfg_get(&s->lfg) % s->w;
372  if (s->y1 < 0 || s->y1 >= s->h)
373  s->y1 = av_lfg_get(&s->lfg) % s->h;
374 
375  for (int n = 0; n < 8; n++) {
376  for (int c = 0; c < 4; c++)
377  s->color_rgbaf[n][c] = s->color_rgba[n][c] / 255.f;
378  }
379 
380  return 0;
381 }
382 
384 {
385  GradientsContext *s = ctx->priv;
386  AVFilterLink *outlink = ctx->outputs[0];
387 
388  if (s->duration >= 0 &&
389  av_rescale_q(s->pts, outlink->time_base, AV_TIME_BASE_Q) >= s->duration) {
390  ff_outlink_set_status(outlink, AVERROR_EOF, s->pts);
391  return 0;
392  }
393 
394  if (ff_outlink_frame_wanted(outlink)) {
395  AVFrame *frame = ff_get_video_buffer(outlink, s->w, s->h);
396  float angle = fmodf(s->angle, 2.f * M_PI);
397  const float w2 = s->w / 2.f;
398  const float h2 = s->h / 2.f;
399 
400  s->angle = angle + s->speed;
401 
402  s->fx0 = (s->x0 - w2) * cosf(angle) - (s->y0 - h2) * sinf(angle) + w2;
403  s->fy0 = (s->x0 - w2) * sinf(angle) + (s->y0 - h2) * cosf(angle) + h2;
404 
405  s->fx1 = (s->x1 - w2) * cosf(angle) - (s->y1 - h2) * sinf(angle) + w2;
406  s->fy1 = (s->x1 - w2) * sinf(angle) + (s->y1 - h2) * cosf(angle) + h2;
407 
408  if (!frame)
409  return AVERROR(ENOMEM);
410 
411 #if FF_API_FRAME_KEY
413  frame->key_frame = 1;
415 #endif
416 
417  frame->flags |= AV_FRAME_FLAG_KEY;
418 #if FF_API_INTERLACED_FRAME
420  frame->interlaced_frame = 0;
422 #endif
423  frame->flags &= ~AV_FRAME_FLAG_INTERLACED;
424  frame->pict_type = AV_PICTURE_TYPE_I;
425  frame->sample_aspect_ratio = (AVRational) {1, 1};
426  frame->pts = s->pts++;
427  frame->duration = 1;
428 
429  ff_filter_execute(ctx, s->draw_slice, frame, NULL,
430  FFMIN(outlink->h, ff_filter_get_nb_threads(ctx)));
431 
432  return ff_filter_frame(outlink, frame);
433  }
434 
435  return FFERROR_NOT_READY;
436 }
437 
438 static const AVFilterPad gradients_outputs[] = {
439  {
440  .name = "default",
441  .type = AVMEDIA_TYPE_VIDEO,
442  .config_props = config_output,
443  },
444 };
445 
447  .p.name = "gradients",
448  .p.description = NULL_IF_CONFIG_SMALL("Draw a gradients."),
449  .p.priv_class = &gradients_class,
450  .p.inputs = NULL,
451  .p.flags = AVFILTER_FLAG_SLICE_THREADS,
452  .priv_size = sizeof(GradientsContext),
455  .activate = activate,
456  .process_command = ff_filter_process_command,
457 };
GradientsContext::nb_colors
int nb_colors
Definition: vsrc_gradients.c:43
ff_get_video_buffer
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
Definition: video.c:116
FF_ENABLE_DEPRECATION_WARNINGS
#define FF_ENABLE_DEPRECATION_WARNINGS
Definition: internal.h:73
draw_gradients_slice32_planar
static int draw_gradients_slice32_planar(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
Definition: vsrc_gradients.c:299
r
const char * r
Definition: vf_curves.c:127
AVERROR
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
opt.h
GradientsContext::pts
int64_t pts
Definition: vsrc_gradients.c:36
av_lfg_init
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
Definition: lfg.c:32
ff_filter_frame
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
Definition: avfilter.c:1078
av_pix_fmt_desc_get
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
Definition: pixdesc.c:3244
AVERROR_EOF
#define AVERROR_EOF
End of file.
Definition: error.h:57
FFERROR_NOT_READY
return FFERROR_NOT_READY
Definition: filter_design.txt:204
AV_OPT_TYPE_VIDEO_RATE
@ AV_OPT_TYPE_VIDEO_RATE
Underlying C type is AVRational.
Definition: opt.h:315
floorf
static __device__ float floorf(float a)
Definition: cuda_runtime.h:172
AV_TIME_BASE_Q
#define AV_TIME_BASE_Q
Internal time base represented as fractional value.
Definition: avutil.h:264
atan2f
#define atan2f(y, x)
Definition: libm.h:45
int64_t
long long int64_t
Definition: coverity.c:34
AVFrame
This structure describes decoded (raw) audio or video data.
Definition: frame.h:410
step
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
Definition: rate_distortion.txt:58
lerp_colors
static uint32_t lerp_colors(uint8_t arr[8][4], int nb_colors, int nb_wrap_colors, float step)
Definition: vsrc_gradients.c:119
w
uint8_t w
Definition: llviddspenc.c:38
AVOption
AVOption.
Definition: opt.h:429
b
#define b
Definition: input.c:41
GradientsContext::lfg
AVLFG lfg
Definition: vsrc_gradients.c:49
AV_OPT_TYPE_DURATION
@ AV_OPT_TYPE_DURATION
Underlying C type is int64_t.
Definition: opt.h:319
float.h
AVFilter::name
const char * name
Filter name.
Definition: avfilter.h:203
c1
static const uint64_t c1
Definition: murmur3.c:52
video.h
lerp_colors16
static uint64_t lerp_colors16(uint8_t arr[8][4], int nb_colors, int nb_wrap_colors, float step)
Definition: vsrc_gradients.c:142
av_get_random_seed
uint32_t av_get_random_seed(void)
Get a seed to use in conjunction with random functions.
Definition: random_seed.c:167
cosf
#define cosf(x)
Definition: libm.h:78
type
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
Definition: writing_filters.txt:86
fabsf
static __device__ float fabsf(float a)
Definition: cuda_runtime.h:181
AVFilterPad
A filter pad used for either input or output.
Definition: filters.h:38
GradientsContext::y0
int y0
Definition: vsrc_gradients.c:44
AV_FRAME_FLAG_KEY
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
Definition: frame.h:661
FFFilter
Definition: filters.h:265
duration
int64_t duration
Definition: movenc.c:65
GradientsContext::fy0
float fy0
Definition: vsrc_gradients.c:45
ff_outlink_set_status
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
Definition: filters.h:627
llrintf
#define llrintf(x)
Definition: libm.h:399
s
#define s(width, name)
Definition: cbs_vp9.c:198
av_lfg_get
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
Definition: lfg.h:53
g
const char * g
Definition: vf_curves.c:128
lfg.h
AV_OPT_TYPE_INT64
@ AV_OPT_TYPE_INT64
Underlying C type is int64_t.
Definition: opt.h:263
filters.h
gradients_options
static const AVOption gradients_options[]
Definition: vsrc_gradients.c:57
ctx
AVFormatContext * ctx
Definition: movenc.c:49
av_rescale_q
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
Definition: mathematics.c:142
FILTER_OUTPUTS
#define FILTER_OUTPUTS(array)
Definition: filters.h:263
AV_PIX_FMT_RGBA
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
Definition: pixfmt.h:100
arg
const char * arg
Definition: jacosubdec.c:67
AV_PIX_FMT_RGBA64
#define AV_PIX_FMT_RGBA64
Definition: pixfmt.h:500
GradientsContext::seed
int64_t seed
Definition: vsrc_gradients.c:47
AVClass
Describe the class of an AVClass context structure.
Definition: log.h:75
OFFSET
#define OFFSET(x)
Definition: vsrc_gradients.c:53
NULL
#define NULL
Definition: coverity.c:32
AVRational
Rational number (pair of numerator and denominator).
Definition: rational.h:58
gradients_outputs
static const AVFilterPad gradients_outputs[]
Definition: vsrc_gradients.c:438
AV_OPT_TYPE_COLOR
@ AV_OPT_TYPE_COLOR
Underlying C type is uint8_t[4].
Definition: opt.h:323
AV_OPT_TYPE_IMAGE_SIZE
@ AV_OPT_TYPE_IMAGE_SIZE
Underlying C type is two consecutive integers.
Definition: opt.h:303
AV_PICTURE_TYPE_I
@ AV_PICTURE_TYPE_I
Intra.
Definition: avutil.h:279
GradientsContext::duration
int64_t duration
duration expressed in microseconds
Definition: vsrc_gradients.c:37
GradientsContext::y1
int y1
Definition: vsrc_gradients.c:44
sqrtf
static __device__ float sqrtf(float a)
Definition: cuda_runtime.h:184
sinf
#define sinf(x)
Definition: libm.h:419
av_clipf
av_clipf
Definition: af_crystalizer.c:122
seed
static unsigned int seed
Definition: videogen.c:78
c
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
Definition: undefined.txt:32
ff_filter_link
static FilterLink * ff_filter_link(AVFilterLink *link)
Definition: filters.h:197
GradientsContext::fx0
float fx0
Definition: vsrc_gradients.c:45
GradientsContext::w
int w
Definition: vsrc_gradients.c:33
AVLFG
Context structure for the Lagged Fibonacci PRNG.
Definition: lfg.h:33
f
f
Definition: af_crystalizer.c:122
NULL_IF_CONFIG_SMALL
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
Definition: internal.h:94
FLAGS
#define FLAGS
Definition: vsrc_gradients.c:54
height
#define height
Definition: dsp.h:85
GradientsContext::h
int h
Definition: vsrc_gradients.c:33
dst
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
Definition: dsp.h:83
for
for(k=2;k<=8;++k)
Definition: h264pred_template.c:424
GradientsContext::x0
int x0
Definition: vsrc_gradients.c:44
fmaxf
float fmaxf(float, float)
GradientsContext::speed
float speed
Definition: vsrc_gradients.c:38
GradientsContext::x1
int x1
Definition: vsrc_gradients.c:44
ff_filter_process_command
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
Definition: avfilter.c:917
a
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
Definition: undefined.txt:41
draw_gradients_slice
static int draw_gradients_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
Definition: vsrc_gradients.c:251
GradientsContext::fx1
float fx1
Definition: vsrc_gradients.c:45
lerpf
static float lerpf(float a, float b, float x)
Definition: vsrc_gradients.c:92
M_PI
#define M_PI
Definition: mathematics.h:67
GradientsContext::color_rgbaf
float color_rgbaf[8][4]
Definition: vsrc_gradients.c:42
AV_OPT_TYPE_FLOAT
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
Definition: opt.h:271
VFT
#define VFT
Definition: vsrc_gradients.c:55
lrintf
#define lrintf(x)
Definition: libm_mips.h:72
i
#define i(width, name, range_min, range_max)
Definition: cbs_h2645.c:256
GradientsContext
Definition: vsrc_gradients.c:31
ff_filter_get_nb_threads
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
Definition: avfilter.c:857
FFMIN
#define FFMIN(a, b)
Definition: macros.h:49
av_inv_q
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
Definition: rational.h:159
AVFilterPad::name
const char * name
Pad name.
Definition: filters.h:44
FILTER_PIXFMTS
#define FILTER_PIXFMTS(...)
Definition: filters.h:248
AV_FRAME_FLAG_INTERLACED
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
Definition: frame.h:669
GradientsContext::fy1
float fy1
Definition: vsrc_gradients.c:45
frame
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
Definition: filter_design.txt:264
AVFILTER_DEFINE_CLASS
AVFILTER_DEFINE_CLASS(gradients)
random_seed.h
ff_filter_execute
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
Definition: avfilter.c:1683
GradientsContext::type
int type
Definition: vsrc_gradients.c:34
lerp_color16
static uint64_t lerp_color16(uint8_t c0[4], uint8_t c1[4], float x)
Definition: vsrc_gradients.c:109
AV_OPT_TYPE_INT
@ AV_OPT_TYPE_INT
Underlying C type is int.
Definition: opt.h:259
avfilter.h
AV_PIX_FMT_GBRAPF32
#define AV_PIX_FMT_GBRAPF32
Definition: pixfmt.h:543
lerp_colors32
static void lerp_colors32(float arr[8][4], int nb_colors, int nb_wrap_colors, float step, float *r, float *g, float *b, float *a)
Definition: vsrc_gradients.c:165
AVFilterContext
An instance of a filter.
Definition: avfilter.h:257
factor
static const int factor[16]
Definition: vf_pp7.c:80
FF_DISABLE_DEPRECATION_WARNINGS
#define FF_DISABLE_DEPRECATION_WARNINGS
Definition: internal.h:72
AVFILTER_FLAG_SLICE_THREADS
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
Definition: avfilter.h:150
desc
const char * desc
Definition: libsvtav1.c:79
AVMEDIA_TYPE_VIDEO
@ AVMEDIA_TYPE_VIDEO
Definition: avutil.h:201
FFFilter::p
AVFilter p
The public AVFilter.
Definition: filters.h:269
GradientsContext::draw_slice
int(* draw_slice)(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
Definition: vsrc_gradients.c:50
GradientsContext::color_rgba
uint8_t color_rgba[8][4]
Definition: vsrc_gradients.c:41
AVPixFmtDescriptor
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
Definition: pixdesc.h:69
project
static float project(float origin_x, float origin_y, float dest_x, float dest_y, float point_x, float point_y, int type)
Definition: vsrc_gradients.c:202
activate
static int activate(AVFilterContext *ctx)
Definition: vsrc_gradients.c:383
GradientsContext::frame_rate
AVRational frame_rate
Definition: vsrc_gradients.c:35
config_output
static int config_output(AVFilterLink *outlink)
Definition: vsrc_gradients.c:333
GradientsContext::angle
float angle
Definition: vsrc_gradients.c:39
imgutils.h
AVERROR_BUG
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
Definition: error.h:52
ff_outlink_frame_wanted
the definition of that something depends on the semantic of the filter The callback must examine the status of the filter s links and proceed accordingly The status of output links is stored in the status_in and status_out fields and tested by the ff_outlink_frame_wanted() function. If this function returns true
av_image_check_size
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
Definition: imgutils.c:318
width
#define width
Definition: dsp.h:85
lerp_color
static uint32_t lerp_color(uint8_t c0[4], uint8_t c1[4], float x)
Definition: vsrc_gradients.c:99
AV_OPT_TYPE_CONST
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
Definition: opt.h:299
ff_vsrc_gradients
const FFFilter ff_vsrc_gradients
Definition: vsrc_gradients.c:446
draw_gradients_slice16
static int draw_gradients_slice16(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
Definition: vsrc_gradients.c:275