Go to the documentation of this file.
53 #define OFFSET(x) offsetof(GradientsContext, x)
54 #define FLAGS AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
55 #define VFT AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
84 {
"circular",
"set circular gradient", 0,
AV_OPT_TYPE_CONST, {.i64=2}, 0, 0,
VFT, .unit =
"type" },
92 static float lerpf(
float a,
float b,
float x)
94 const float y = 1.f - x;
101 const float y = 1.f - x;
103 return (
lrintf(c0[0] * y +
c1[0] * x)) << 0 |
104 (
lrintf(c0[1] * y +
c1[1] * x)) << 8 |
105 (
lrintf(c0[2] * y +
c1[2] * x)) << 16 |
106 (
lrintf(c0[3] * y +
c1[3] * x)) << 24;
111 const float y = 1.f - x;
113 return ((uint64_t)
llrintf((c0[0] * y +
c1[0] * x) * 256)) << 0 |
114 ((uint64_t)
llrintf((c0[1] * y +
c1[1] * x) * 256)) << 16 |
115 ((uint64_t)
llrintf((c0[2] * y +
c1[2] * x) * 256)) << 32 |
116 ((uint64_t)
llrintf((c0[3] * y +
c1[3] * x) * 256)) << 48;
119 static uint32_t
lerp_colors(uint8_t arr[8][4],
int nb_colors,
int nb_wrap_colors,
float step)
124 if (nb_colors == 1 ||
step <= 0.0) {
125 return arr[0][0] | (arr[0][1] << 8) | (arr[0][2] << 16) | (arr[0][3] << 24);
126 }
else if (
step >= 1.0) {
128 return arr[
i][0] | (arr[
i][1] << 8) | (arr[
i][2] << 16) | (arr[
i][3] << 24);
131 scl =
step * (nb_wrap_colors - 1);
134 if (
i >= nb_colors - 1) {
147 if (nb_colors == 1 ||
step <= 0.0) {
148 return ((uint64_t)arr[0][0] << 8) | ((uint64_t)arr[0][1] << 24) | ((uint64_t)arr[0][2] << 40) | ((uint64_t)arr[0][3] << 56);
149 }
else if (
step >= 1.0) {
151 return ((uint64_t)arr[
i][0] << 8) | ((uint64_t)arr[
i][1] << 24) | ((uint64_t)arr[
i][2] << 40) | ((uint64_t)arr[
i][3] << 56);
154 scl =
step * (nb_wrap_colors - 1);
157 if (
i >= nb_colors - 1) {
166 int nb_wrap_colors,
float step,
167 float *
r,
float *
g,
float *
b,
float *
a)
172 if (nb_colors == 1 ||
step <= 0.0) {
178 }
else if (
step >= 1.0) {
187 scl =
step * (nb_wrap_colors - 1);
190 if (
i >= nb_colors - 1) {
196 *
r =
lerpf(arr[
i][0], arr[j][0], x);
197 *
g =
lerpf(arr[
i][1], arr[j][1], x);
198 *
b =
lerpf(arr[
i][2], arr[j][2], x);
199 *
a =
lerpf(arr[
i][3], arr[j][3], x);
202 static float project(
float origin_x,
float origin_y,
203 float dest_x,
float dest_y,
204 float point_x,
float point_y,
int type)
206 float op_x = point_x - origin_x;
207 float op_y = point_y - origin_y;
208 float od_x = dest_x - origin_x;
209 float od_y = dest_y - origin_y;
215 od_s_q = od_x * od_x + od_y * od_y;
218 od_s_q =
sqrtf(od_x * od_x + od_y * od_y);
231 op_x_od = op_x * od_x + op_y * od_y;
234 op_x_od =
sqrtf(op_x * op_x + op_y * op_y);
257 const int start = (
height * job ) / nb_jobs;
258 const int end = (
height * (job+1)) / nb_jobs;
259 const ptrdiff_t linesize =
frame->linesize[0] / 4;
260 uint32_t *
dst = (uint32_t *)
frame->data[0] + start * linesize;
261 const int type =
s->type;
263 for (
int y = start; y < end; y++) {
264 for (
int x = 0; x <
width; x++) {
281 const int start = (
height * job ) / nb_jobs;
282 const int end = (
height * (job+1)) / nb_jobs;
283 const ptrdiff_t linesize =
frame->linesize[0] / 8;
284 uint64_t *
dst = (uint64_t *)
frame->data[0] + start * linesize;
285 const int type =
s->type;
287 for (
int y = start; y < end; y++) {
288 for (
int x = 0; x <
width; x++) {
305 const int start = (
height * job ) / nb_jobs;
306 const int end = (
height * (job+1)) / nb_jobs;
307 const ptrdiff_t linesize_g =
frame->linesize[0] / 4;
308 const ptrdiff_t linesize_b =
frame->linesize[1] / 4;
309 const ptrdiff_t linesize_r =
frame->linesize[2] / 4;
310 const ptrdiff_t linesize_a =
frame->linesize[3] / 4;
311 float *dst_g = (
float *)
frame->data[0] + start * linesize_g;
312 float *dst_b = (
float *)
frame->data[1] + start * linesize_b;
313 float *dst_r = (
float *)
frame->data[2] + start * linesize_r;
314 float *dst_a = (
float *)
frame->data[3] + start * linesize_a;
315 const int type =
s->type;
317 for (
int y = start; y < end; y++) {
318 for (
int x = 0; x <
width; x++) {
321 &dst_r[x], &dst_g[x], &dst_b[x], &dst_a[x]);
352 switch (
desc->comp[0].depth) {
366 if (
s->x0 < 0 ||
s->x0 >=
s->w)
368 if (
s->y0 < 0 ||
s->y0 >=
s->h)
370 if (
s->x1 < 0 ||
s->x1 >=
s->w)
372 if (
s->y1 < 0 ||
s->y1 >=
s->h)
375 for (
int n = 0; n < 8; n++) {
376 for (
int c = 0;
c < 4;
c++)
377 s->color_rgbaf[n][
c] =
s->color_rgba[n][
c] / 255.f;
388 if (
s->duration >= 0 &&
396 float angle = fmodf(
s->angle, 2.f *
M_PI);
397 const float w2 =
s->w / 2.f;
398 const float h2 =
s->h / 2.f;
400 s->angle = angle +
s->speed;
402 s->fx0 = (
s->x0 - w2) *
cosf(angle) - (
s->y0 - h2) *
sinf(angle) + w2;
403 s->fy0 = (
s->x0 - w2) *
sinf(angle) + (
s->y0 - h2) *
cosf(angle) + h2;
405 s->fx1 = (
s->x1 - w2) *
cosf(angle) - (
s->y1 - h2) *
sinf(angle) + w2;
406 s->fy1 = (
s->x1 - w2) *
sinf(angle) + (
s->y1 - h2) *
cosf(angle) + h2;
413 frame->key_frame = 1;
418 #if FF_API_INTERLACED_FRAME
420 frame->interlaced_frame = 0;
447 .
p.
name =
"gradients",
449 .p.priv_class = &gradients_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
#define FF_ENABLE_DEPRECATION_WARNINGS
static int draw_gradients_slice32_planar(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
av_cold void av_lfg_init(AVLFG *c, unsigned int seed)
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
const AVPixFmtDescriptor * av_pix_fmt_desc_get(enum AVPixelFormat pix_fmt)
#define AVERROR_EOF
End of file.
@ AV_OPT_TYPE_VIDEO_RATE
Underlying C type is AVRational.
static __device__ float floorf(float a)
#define AV_TIME_BASE_Q
Internal time base represented as fractional value.
This structure describes decoded (raw) audio or video data.
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static uint32_t lerp_colors(uint8_t arr[8][4], int nb_colors, int nb_wrap_colors, float step)
@ AV_OPT_TYPE_DURATION
Underlying C type is int64_t.
const char * name
Filter name.
A link between two filters.
static uint64_t lerp_colors16(uint8_t arr[8][4], int nb_colors, int nb_wrap_colors, float step)
Link properties exposed to filter code, but not external callers.
uint32_t av_get_random_seed(void)
Get a seed to use in conjunction with random functions.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf type
static __device__ float fabsf(float a)
A filter pad used for either input or output.
#define AV_FRAME_FLAG_KEY
A flag to mark frames that are keyframes.
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
static unsigned int av_lfg_get(AVLFG *c)
Get the next random unsigned 32-bit number using an ALFG.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
@ AV_OPT_TYPE_INT64
Underlying C type is int64_t.
static const AVOption gradients_options[]
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
#define FILTER_OUTPUTS(array)
@ AV_PIX_FMT_RGBA
packed RGBA 8:8:8:8, 32bpp, RGBARGBA...
#define AV_PIX_FMT_RGBA64
Describe the class of an AVClass context structure.
Rational number (pair of numerator and denominator).
static const AVFilterPad gradients_outputs[]
@ AV_OPT_TYPE_COLOR
Underlying C type is uint8_t[4].
@ AV_OPT_TYPE_IMAGE_SIZE
Underlying C type is two consecutive integers.
@ AV_PICTURE_TYPE_I
Intra.
int64_t duration
duration expressed in microseconds
static __device__ float sqrtf(float a)
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
static FilterLink * ff_filter_link(AVFilterLink *link)
Context structure for the Lagged Fibonacci PRNG.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
uint8_t ptrdiff_t const uint8_t ptrdiff_t int intptr_t intptr_t int int16_t * dst
float fmaxf(float, float)
int format
agreed upon media format
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
The reader does not expect b to be semantically here and if the code is changed by maybe adding a a division or other the signedness will almost certainly be mistaken To avoid this confusion a new type was SUINT is the C unsigned type but it holds a signed int to use the same example SUINT a
static int draw_gradients_slice(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
static float lerpf(float a, float b, float x)
@ AV_OPT_TYPE_FLOAT
Underlying C type is float.
#define i(width, name, range_min, range_max)
int w
agreed upon image width
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
const char * name
Pad name.
#define FILTER_PIXFMTS(...)
#define AV_FRAME_FLAG_INTERLACED
A flag to mark frames whose content is interlaced.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
AVFILTER_DEFINE_CLASS(gradients)
int h
agreed upon image height
int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
static uint64_t lerp_color16(uint8_t c0[4], uint8_t c1[4], float x)
@ AV_OPT_TYPE_INT
Underlying C type is int.
#define AV_PIX_FMT_GBRAPF32
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
static void lerp_colors32(float arr[8][4], int nb_colors, int nb_wrap_colors, float step, float *r, float *g, float *b, float *a)
static const int factor[16]
#define FF_DISABLE_DEPRECATION_WARNINGS
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
AVFilter p
The public AVFilter.
int(* draw_slice)(AVFilterContext *ctx, void *arg, int job, int nb_jobs)
Descriptor that unambiguously describes how the bits of a pixel are stored in the up to 4 data planes...
static float project(float origin_x, float origin_y, float dest_x, float dest_y, float point_x, float point_y, int type)
static int activate(AVFilterContext *ctx)
static int config_output(AVFilterLink *outlink)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
the definition of that something depends on the semantic of the filter The callback must examine the status of the filter s links and proceed accordingly The status of output links is stored in the status_in and status_out fields and tested by the ff_outlink_frame_wanted() function. If this function returns true
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable.
int av_image_check_size(unsigned int w, unsigned int h, int log_offset, void *log_ctx)
Check if the given dimension of an image is valid, meaning that all bytes of the image can be address...
static uint32_t lerp_color(uint8_t c0[4], uint8_t c1[4], float x)
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
const FFFilter ff_vsrc_gradients
static int draw_gradients_slice16(AVFilterContext *ctx, void *arg, int job, int nb_jobs)