Go to the documentation of this file.
48 #define MEAN_SUM(suffix, type, zero) \
49 static type mean_sum_##suffix(const type *in, \
52 type mean_sum = zero; \
54 for (int i = 0; i < size; i++) \
63 #define SQUARE_SUM(suffix, type, zero) \
64 static type square_sum_##suffix(const type *x, \
68 type square_sum = zero; \
70 for (int i = 0; i < size; i++) \
71 square_sum += x[i] * y[i]; \
79 #define XCORRELATE(suffix, type, zero, small, sqrtfun)\
80 static type xcorrelate_##suffix(const type *x, \
83 type sumy, int size) \
85 const type xm = sumx / size, ym = sumy / size; \
86 type num = zero, den, den0 = zero, den1 = zero; \
88 for (int i = 0; i < size; i++) { \
89 type xd = x[i] - xm; \
90 type yd = y[i] - ym; \
98 den = sqrtfun((den0 * den1) / size / size); \
100 return den <= small ? zero : num / den; \
106 #define XCORRELATE_SLOW(suffix, type) \
107 static int xcorrelate_slow_##suffix(AVFilterContext *ctx, \
108 AVFrame *out, int available) \
110 AudioXCorrelateContext *s = ctx->priv; \
111 const int size = s->size; \
114 for (int ch = 0; ch < out->ch_layout.nb_channels; ch++) { \
115 const type *x = (const type *)s->cache[0]->extended_data[ch]; \
116 const type *y = (const type *)s->cache[1]->extended_data[ch]; \
117 type *sumx = (type *)s->mean_sum[0]->extended_data[ch]; \
118 type *sumy = (type *)s->mean_sum[1]->extended_data[ch]; \
119 type *dst = (type *)out->extended_data[ch]; \
123 sumx[0] = mean_sum_##suffix(x, size); \
124 sumy[0] = mean_sum_##suffix(y, size); \
128 for (int n = 0; n < out->nb_samples; n++) { \
129 const int idx = n + size; \
131 dst[n] = xcorrelate_##suffix(x + n, y + n, \
148 #define clipf(x) (av_clipf(x, -1.f, 1.f))
149 #define clipd(x) (av_clipd(x, -1.0, 1.0))
151 #define XCORRELATE_FAST(suffix, type, zero, small, sqrtfun, CLIP) \
152 static int xcorrelate_fast_##suffix(AVFilterContext *ctx, AVFrame *out, \
155 AudioXCorrelateContext *s = ctx->priv; \
156 const int size = s->size; \
159 for (int ch = 0; ch < out->ch_layout.nb_channels; ch++) { \
160 const type *x = (const type *)s->cache[0]->extended_data[ch]; \
161 const type *y = (const type *)s->cache[1]->extended_data[ch]; \
162 type *num_sum = (type *)s->num_sum->extended_data[ch]; \
163 type *den_sumx = (type *)s->den_sum[0]->extended_data[ch]; \
164 type *den_sumy = (type *)s->den_sum[1]->extended_data[ch]; \
165 type *dst = (type *)out->extended_data[ch]; \
169 num_sum[0] = square_sum_##suffix(x, y, size); \
170 den_sumx[0] = square_sum_##suffix(x, x, size); \
171 den_sumy[0] = square_sum_##suffix(y, y, size); \
175 for (int n = 0; n < out->nb_samples; n++) { \
176 const int idx = n + size; \
179 num = num_sum[0] / size; \
180 den = sqrtfun((den_sumx[0] * den_sumy[0]) / size / size); \
182 dst[n] = den <= small ? zero : CLIP(num / den); \
184 num_sum[0] -= x[n] * y[n]; \
185 num_sum[0] += x[idx] * y[idx]; \
186 den_sumx[0] -= x[n] * x[n]; \
187 den_sumx[0] += x[idx] * x[idx]; \
188 den_sumx[0] = FFMAX(den_sumx[0], zero); \
189 den_sumy[0] -= y[n] * y[n]; \
190 den_sumy[0] += y[idx] * y[idx]; \
191 den_sumy[0] = FFMAX(den_sumy[0], zero); \
201 #define XCORRELATE_BEST(suffix, type, zero, small, sqrtfun, FMAX, CLIP) \
202 static int xcorrelate_best_##suffix(AVFilterContext *ctx, AVFrame *out, \
205 AudioXCorrelateContext *s = ctx->priv; \
206 const int size = s->size; \
209 for (int ch = 0; ch < out->ch_layout.nb_channels; ch++) { \
210 const type *x = (const type *)s->cache[0]->extended_data[ch]; \
211 const type *y = (const type *)s->cache[1]->extended_data[ch]; \
212 type *mean_sumx = (type *)s->mean_sum[0]->extended_data[ch]; \
213 type *mean_sumy = (type *)s->mean_sum[1]->extended_data[ch]; \
214 type *num_sum = (type *)s->num_sum->extended_data[ch]; \
215 type *den_sumx = (type *)s->den_sum[0]->extended_data[ch]; \
216 type *den_sumy = (type *)s->den_sum[1]->extended_data[ch]; \
217 type *dst = (type *)out->extended_data[ch]; \
221 num_sum[0] = square_sum_##suffix(x, y, size); \
222 den_sumx[0] = square_sum_##suffix(x, x, size); \
223 den_sumy[0] = square_sum_##suffix(y, y, size); \
224 mean_sumx[0] = mean_sum_##suffix(x, size); \
225 mean_sumy[0] = mean_sum_##suffix(y, size); \
229 for (int n = 0; n < out->nb_samples; n++) { \
230 const int idx = n + size; \
231 type num, den, xm, ym; \
233 xm = mean_sumx[0] / size; \
234 ym = mean_sumy[0] / size; \
235 num = num_sum[0] - size * xm * ym; \
236 den = sqrtfun(FMAX(den_sumx[0] - size * xm * xm, zero)) * \
237 sqrtfun(FMAX(den_sumy[0] - size * ym * ym, zero)); \
239 dst[n] = den <= small ? zero : CLIP(num / den); \
241 mean_sumx[0]-= x[n]; \
242 mean_sumx[0]+= x[idx]; \
243 mean_sumy[0]-= y[n]; \
244 mean_sumy[0]+= y[idx]; \
245 num_sum[0] -= x[n] * y[n]; \
246 num_sum[0] += x[idx] * y[idx]; \
247 den_sumx[0] -= x[n] * x[n]; \
248 den_sumx[0] += x[idx] * x[idx]; \
249 den_sumx[0] = FMAX(den_sumx[0], zero); \
250 den_sumy[0] -= y[n] * y[n]; \
251 den_sumy[0] += y[idx] * y[idx]; \
252 den_sumy[0] = FMAX(den_sumy[0], zero); \
273 for (
int i = 0;
i < 2 && !
s->eof;
i++) {
291 if (!
s->cache[0] ||
s->cache[0]->nb_samples <
available) {
298 if (!
s->cache[1] ||
s->cache[1]->nb_samples <
available) {
320 s->pts += out_samples;
328 for (
int i = 0;
i < 2 && !
s->eof;
i++) {
360 for (
int i = 0;
i < 2;
i++) {
380 if (!
s->fifo[0] || !
s->fifo[1])
388 if (!
s->mean_sum[0] || !
s->mean_sum[1] || !
s->num_sum ||
389 !
s->den_sum[0] || !
s->den_sum[1])
393 case 0:
s->xcorrelate = xcorrelate_slow_f;
break;
394 case 1:
s->xcorrelate = xcorrelate_fast_f;
break;
395 case 2:
s->xcorrelate = xcorrelate_best_f;
break;
400 case 0:
s->xcorrelate = xcorrelate_slow_d;
break;
401 case 1:
s->xcorrelate = xcorrelate_fast_d;
break;
402 case 2:
s->xcorrelate = xcorrelate_best_d;
break;
426 .
name =
"axcorrelate0",
430 .name =
"axcorrelate1",
443 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
444 #define OFFSET(x) offsetof(AudioXCorrelateContext, x)
458 .
p.
name =
"axcorrelate",
460 .p.priv_class = &axcorrelate_class,
void av_audio_fifo_free(AVAudioFifo *af)
Free an AVAudioFifo.
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
const FFFilter ff_af_axcorrelate
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
#define AVERROR_EOF
End of file.
#define XCORRELATE_FAST(suffix, type, zero, small, sqrtfun, CLIP)
int av_audio_fifo_write(AVAudioFifo *af, void *const *data, int nb_samples)
Write data to an AVAudioFifo.
AVFILTER_DEFINE_CLASS(axcorrelate)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
#define FILTER_INPUTS(array)
This structure describes decoded (raw) audio or video data.
const char * name
Filter name.
int nb_channels
Number of channels in this layout.
A link between two filters.
int ff_inlink_consume_frame(AVFilterLink *link, AVFrame **rframe)
Take a frame from the link's FIFO and update the link's stats.
#define FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, filter)
Forward the status on an output link to all input links.
Context for an Audio FIFO Buffer.
int av_audio_fifo_drain(AVAudioFifo *af, int nb_samples)
Drain data from an AVAudioFifo.
#define XCORRELATE(suffix, type, zero, small, sqrtfun)
A filter pad used for either input or output.
#define SQUARE_SUM(suffix, type, zero)
#define FILTER_SAMPLEFMTS(...)
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
void ff_inlink_request_frame(AVFilterLink *link)
Mark that a frame is wanted on the link.
static int config_output(AVFilterLink *outlink)
#define FILTER_OUTPUTS(array)
Describe the class of an AVClass context structure.
int(* xcorrelate)(AVFilterContext *ctx, AVFrame *out, int available)
AVAudioFifo * av_audio_fifo_alloc(enum AVSampleFormat sample_fmt, int channels, int nb_samples)
Allocate an AVAudioFifo.
static __device__ float sqrtf(float a)
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
float fmaxf(float, float)
int format
agreed upon media format
#define XCORRELATE_SLOW(suffix, type)
#define AV_NOPTS_VALUE
Undefined timestamp value.
AVFilterContext * src
source filter
int av_audio_fifo_peek(const AVAudioFifo *af, void *const *data, int nb_samples)
Peek data from an AVAudioFifo.
int av_audio_fifo_size(AVAudioFifo *af)
Get the current number of samples in the AVAudioFifo available for reading.
static av_cold void uninit(AVFilterContext *ctx)
int nb_samples
number of audio samples (per channel) described by this frame
#define i(width, name, range_min, range_max)
uint8_t ** extended_data
pointers to the data planes/channels.
static const AVOption axcorrelate_options[]
static const AVFilterPad inputs[]
const char * name
Pad name.
these buffered frames must be flushed immediately if a new input produces new the filter must not call request_frame to get more It must just process the frame or queue it The task of requesting more frames is left to the filter s request_frame method or the application If a filter has several the filter must be ready for frames arriving randomly on any input any filter with several inputs will most likely require some kind of queuing mechanism It is perfectly acceptable to have a limited queue and to drop frames when the inputs are too unbalanced request_frame For filters that do not use the this method is called when a frame is wanted on an output For a it should directly call filter_frame on the corresponding output For a if there are queued frames already one of these frames should be pushed If the filter should request a frame on one of its repeatedly until at least one frame has been pushed Return or at least make progress towards producing a frame
static int activate(AVFilterContext *ctx)
double fmax(double, double)
@ AV_OPT_TYPE_INT
Underlying C type is int.
@ AV_SAMPLE_FMT_DBLP
double, planar
AVFilter p
The public AVFilter.
AVChannelLayout ch_layout
channel layout of current buffer (see libavutil/channel_layout.h)
the definition of that something depends on the semantic of the filter The callback must examine the status of the filter s links and proceed accordingly The status of output links is stored in the status_in and status_out fields and tested by the ff_outlink_frame_wanted() function. If this function returns true
@ AV_OPT_TYPE_CONST
Special option type for declaring named constants.
#define MEAN_SUM(suffix, type, zero)
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.
#define XCORRELATE_BEST(suffix, type, zero, small, sqrtfun, FMAX, CLIP)
static const AVFilterPad outputs[]