Go to the documentation of this file.
44 static void fcmul_add_c(
float *sum,
const float *t,
const float *
c, ptrdiff_t
len)
48 for (n = 0; n <
len; n++) {
49 const float cre =
c[2 * n ];
50 const float cim =
c[2 * n + 1];
51 const float tre = t[2 * n ];
52 const float tim = t[2 * n + 1];
54 sum[2 * n ] += tre * cre - tim * cim;
55 sum[2 * n + 1] += tre * cim + tim * cre;
58 sum[2 * n] += t[2 * n] *
c[2 * n];
63 for (
int n = 0; n <
len; n++)
64 for (
int m = 0; m <= n; m++)
65 out[n] += ir[m].
re * in[n - m];
70 if ((nb_samples & 15) == 0 && nb_samples >= 16) {
71 s->fdsp->vector_fmac_scalar(dst,
src, 1.
f, nb_samples);
73 for (
int n = 0; n < nb_samples; n++)
81 const float *in = (
const float *)
s->in->extended_data[ch] +
offset;
82 float *
block, *buf, *ptr = (
float *)
out->extended_data[ch] +
offset;
83 const int nb_samples =
FFMIN(
s->min_part_size,
out->nb_samples -
offset);
92 if (
s->min_part_size >= 8) {
96 for (n = 0; n < nb_samples; n++)
129 memmove(
src,
src +
s->min_part_size, (seg->
input_size -
s->min_part_size) *
sizeof(*src));
131 for (n = 0; n < nb_samples; n++) {
137 memset(sum, 0,
sizeof(*sum) * seg->
fft_length);
167 memcpy(dst, buf, seg->
part_size *
sizeof(*dst));
174 memmove(
src,
src +
s->min_part_size, (seg->
input_size -
s->min_part_size) *
sizeof(*src));
179 if (
s->min_part_size >= 8) {
180 s->fdsp->vector_fmul_scalar(ptr, ptr,
s->wet_gain,
FFALIGN(nb_samples, 4));
183 for (n = 0; n < nb_samples; n++)
184 ptr[n] *=
s->wet_gain;
204 const int start = (
out->channels * jobnr) / nb_jobs;
205 const int end = (
out->channels * (jobnr+1)) / nb_jobs;
207 for (
int ch = start; ch < end; ch++) {
249 for (
i = 0; txt[
i];
i++) {
252 uint8_t *p = pic->
data[0] + y * pic->
linesize[0] + (x +
i * 8) * 4;
253 for (char_y = 0; char_y < font_height; char_y++) {
255 if (font[txt[
i] * font_height + char_y] &
mask)
266 int dx =
FFABS(x1-x0);
267 int dy =
FFABS(y1-y0), sy = y0 < y1 ? 1 : -1;
268 int err = (dx>dy ? dx : -dy) / 2, e2;
273 if (x0 == x1 && y0 == y1)
293 float *mag, *phase, *delay,
min = FLT_MAX,
max = FLT_MIN;
294 float min_delay = FLT_MAX, max_delay = FLT_MIN;
295 int prev_ymag = -1, prev_yphase = -1, prev_ydelay = -1;
299 memset(
out->data[0], 0,
s->h *
out->linesize[0]);
304 if (!mag || !phase || !delay)
308 for (
i = 0;
i <
s->w;
i++) {
309 const float *
src = (
const float *)
s->ir[
s->selir]->extended_data[
channel];
310 double w =
i *
M_PI / (
s->w - 1);
311 double div, real_num = 0., imag_num = 0., real = 0., imag = 0.;
313 for (x = 0; x <
s->nb_taps; x++) {
314 real += cos(-x *
w) *
src[x];
315 imag += sin(-x *
w) *
src[x];
316 real_num += cos(-x *
w) *
src[x] * x;
317 imag_num += sin(-x *
w) *
src[x] * x;
320 mag[
i] =
hypot(real, imag);
321 phase[
i] = atan2(imag, real);
322 div = real * real + imag * imag;
323 delay[
i] = (real_num * real + imag_num * imag) / div;
326 min_delay =
fminf(min_delay, delay[
i]);
327 max_delay =
fmaxf(max_delay, delay[
i]);
330 for (
i = 0;
i <
s->w;
i++) {
331 int ymag = mag[
i] /
max * (
s->h - 1);
332 int ydelay = (delay[
i] - min_delay) / (max_delay - min_delay) * (
s->h - 1);
333 int yphase = (0.5 * (1. + phase[
i] /
M_PI)) * (
s->h - 1);
335 ymag =
s->h - 1 -
av_clip(ymag, 0,
s->h - 1);
336 yphase =
s->h - 1 -
av_clip(yphase, 0,
s->h - 1);
337 ydelay =
s->h - 1 -
av_clip(ydelay, 0,
s->h - 1);
342 prev_yphase = yphase;
344 prev_ydelay = ydelay;
351 prev_yphase = yphase;
352 prev_ydelay = ydelay;
355 if (
s->w > 400 &&
s->h > 100) {
360 drawtext(
out, 2, 12,
"Min Magnitude:", 0xDDDDDDDD);
365 snprintf(text,
sizeof(text),
"%.2f", max_delay);
369 snprintf(text,
sizeof(text),
"%.2f", min_delay);
380 int offset,
int nb_partitions,
int part_size)
402 for (
int ch = 0; ch <
ctx->inputs[0]->channels && part_size >= 8; ch++) {
426 for (
int ch = 0; ch <
s->nb_channels; ch++) {
433 for (
int ch = 0; ch <
s->nb_channels; ch++) {
454 int ret,
i, ch, n, cur_nb_taps;
458 int part_size, max_part_size;
465 if (
s->minp >
s->maxp) {
471 max_part_size = 1 <<
av_log2(
s->maxp);
473 s->min_part_size = part_size;
475 for (
i = 0;
left > 0;
i++) {
476 int step = part_size == max_part_size ? INT_MAX : 1 + (
i == 0);
477 int nb_partitions =
FFMIN(
step, (
left + part_size - 1) / part_size);
479 s->nb_segments =
i + 1;
483 offset += nb_partitions * part_size;
484 left -= nb_partitions * part_size;
486 part_size =
FFMIN(part_size, max_part_size);
490 if (!
s->ir[
s->selir]) {
502 cur_nb_taps =
s->ir[
s->selir]->nb_samples;
509 for (ch = 0; ch <
ctx->inputs[1 +
s->selir]->channels; ch++) {
510 float *time = (
float *)
s->ir[
s->selir]->extended_data[!
s->one2many * ch];
512 for (
i = 0;
i < cur_nb_taps;
i++)
515 s->gain =
ctx->inputs[1 +
s->selir]->channels /
power;
518 for (ch = 0; ch <
ctx->inputs[1 +
s->selir]->channels; ch++) {
519 float *time = (
float *)
s->ir[
s->selir]->extended_data[!
s->one2many * ch];
521 for (
i = 0;
i < cur_nb_taps;
i++)
524 s->gain =
ctx->inputs[1 +
s->selir]->channels /
power;
527 for (ch = 0; ch <
ctx->inputs[1 +
s->selir]->channels; ch++) {
528 float *time = (
float *)
s->ir[
s->selir]->extended_data[!
s->one2many * ch];
530 for (
i = 0;
i < cur_nb_taps;
i++)
533 s->gain = sqrtf(ch /
power);
539 s->gain =
FFMIN(
s->gain *
s->ir_gain, 1.f);
541 for (ch = 0; ch <
ctx->inputs[1 +
s->selir]->channels; ch++) {
542 float *time = (
float *)
s->ir[
s->selir]->extended_data[!
s->one2many * ch];
544 s->fdsp->vector_fmul_scalar(time, time,
s->gain,
FFALIGN(cur_nb_taps, 4));
550 for (ch = 0; ch <
ctx->inputs[1 +
s->selir]->channels; ch++) {
551 float *time = (
float *)
s->ir[
s->selir]->extended_data[!
s->one2many * ch];
569 const int remaining =
s->nb_taps - toffset;
573 for (n = 0; n <
size; n++)
574 coeff[coffset + n].
re = time[toffset + n];
586 coeff[coffset].im = 0;
616 int nb_taps, max_nb_taps;
619 max_nb_taps =
s->max_ir_len *
ctx->outputs[0]->sample_rate;
620 if (nb_taps > max_nb_taps) {
639 if (!
s->eof_coeffs[
s->selir]) {
645 s->eof_coeffs[
s->selir] = 1;
647 if (!
s->eof_coeffs[
s->selir]) {
656 if (!
s->have_coeffs &&
s->eof_coeffs[
s->selir]) {
663 wanted =
FFMAX(
s->min_part_size, (
available /
s->min_part_size) *
s->min_part_size);
671 if (
s->response &&
s->have_coeffs) {
672 int64_t old_pts =
s->video->pts;
673 int64_t new_pts =
av_rescale_q(
s->pts,
ctx->inputs[0]->time_base,
ctx->outputs[1]->time_base);
677 s->video->pts = new_pts;
751 for (
int i = 1;
i <
ctx->nb_inputs;
i++) {
768 s->one2many =
ctx->inputs[1 +
s->selir]->channels == 1;
775 s->nb_coef_channels =
ctx->inputs[1 +
s->selir]->channels;
785 for (
int i = 0;
i <
s->nb_segments;
i++) {
791 for (
int i = 0;
i <
s->nb_irs;
i++) {
840 for (
int n = 0; n <
s->nb_irs; n++) {
866 .
name =
"filter_response",
893 int prev_ir =
s->selir;
899 s->selir =
FFMIN(
s->nb_irs - 1,
s->selir);
901 if (prev_ir !=
s->selir) {
908 #define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
909 #define AFR AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM
910 #define VF AV_OPT_FLAG_VIDEO_PARAM|AV_OPT_FLAG_FILTERING_PARAM
911 #define OFFSET(x) offsetof(AudioFIRContext, x)
928 {
"channel",
"set IR channel to display frequency response",
OFFSET(ir_channel),
AV_OPT_TYPE_INT, {.i64=0}, 0, 1024,
VF },
942 .description =
NULL_IF_CONFIG_SMALL(
"Apply Finite Impulse Response filter with supplied coefficients in additional stream(s)."),
944 .priv_class = &afir_class,
AVFrame * ff_get_video_buffer(AVFilterLink *link, int w, int h)
Request a picture buffer with a specific set of permissions.
static int activate(AVFilterContext *ctx)
AVFrame * ff_get_audio_buffer(AVFilterLink *link, int nb_samples)
Request an audio samples buffer with a specific set of permissions.
@ AV_SAMPLE_FMT_FLTP
float, planar
A list of supported channel layouts.
static void direct(const float *in, const FFTComplex *ir, int len, float *out)
AVPixelFormat
Pixel format.
they must not be accessed directly The fifo field contains the frames that are queued in the input for processing by the filter The status_in and status_out fields contains the queued status(EOF or error) of the link
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a all references to both lists are replaced with a reference to the intersection And when a single format is eventually chosen for a link amongst the remaining all references to the list are updated That means that if a filter requires that its input and output have the same format amongst a supported all it has to do is use a reference to the same list of formats query_formats can leave some formats unset and return AVERROR(EAGAIN) to cause the negotiation mechanism toagain later. That can be used by filters with complex requirements to use the format negotiated on one link to set the formats supported on another. Frame references ownership and permissions
int ff_filter_frame(AVFilterLink *link, AVFrame *frame)
Send a frame of data to the next filter.
static enum AVSampleFormat sample_fmts[]
enum MovChannelLayoutTag * layouts
#define AVERROR_EOF
End of file.
@ AV_OPT_TYPE_VIDEO_RATE
offset must point to AVRational
#define AV_CH_LAYOUT_MONO
char * av_asprintf(const char *fmt,...)
void av_frame_free(AVFrame **frame)
Free the frame and any dynamically allocated objects in it, e.g.
This structure describes decoded (raw) audio or video data.
int64_t pts
Presentation timestamp in time_base units (time when frame should be shown to user).
trying all byte sequences megabyte in length and selecting the best looking sequence will yield cases to try But a word about which is also called distortion Distortion can be quantified by almost any quality measurement one chooses the sum of squared differences is used but more complex methods that consider psychovisual effects can be used as well It makes no difference in this discussion First step
static int fir_quantum(AVFilterContext *ctx, AVFrame *out, int ch, int offset)
#define FILTER_QUERY_FUNC(func)
void(* fcmul_add)(float *sum, const float *t, const float *c, ptrdiff_t len)
const char * name
Filter name.
A link between two filters.
int channels
Number of channels.
uint8_t * data[AV_NUM_DATA_POINTERS]
pointer to the picture/channel planes.
#define FF_FILTER_FORWARD_STATUS_BACK_ALL(outlink, filter)
Forward the status on an output link to all input links.
int ff_append_inpad(AVFilterContext *f, AVFilterPad *p)
Append a new input/output pad to the filter's list of such pads.
static av_cold void uninit(AVFilterContext *ctx)
static int fir_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
static const AVOption afir_options[]
void ff_afir_init_x86(AudioFIRDSPContext *s)
static av_always_inline float scale(float x, float s)
#define AVFILTER_FLAG_DYNAMIC_INPUTS
The number of the filter inputs is not determined just by AVFilter.inputs.
static void uninit_segment(AVFilterContext *ctx, AudioFIRSegment *seg)
A filter pad used for either input or output.
#define AV_LOG_ERROR
Something went wrong and cannot losslessly be recovered.
AVFILTER_DEFINE_CLASS(afir)
static const uint16_t mask[17]
static void ff_outlink_set_status(AVFilterLink *link, int status, int64_t pts)
Set the status field of a link from the source filter.
void ff_inlink_request_frame(AVFilterLink *link)
Mark that a frame is wanted on the link.
AVRational sample_aspect_ratio
agreed upon sample aspect ratio
float fminf(float, float)
AVRational frame_rate
Frame rate of the stream on the link, or 1/0 if unknown or variable; if left to 0/0,...
static enum AVPixelFormat pix_fmts[]
#define AV_LOG_DEBUG
Stuff which is only useful for libav* developers.
AVFrame * av_frame_clone(const AVFrame *src)
Create a new frame that references the same data as src.
int64_t av_rescale_q(int64_t a, AVRational bq, AVRational cq)
Rescale a 64-bit integer by 2 rational numbers.
void av_rdft_calc(RDFTContext *s, FFTSample *data)
Filter the word “frame” indicates either a video frame or a group of audio as stored in an AVFrame structure Format for each input and each output the list of supported formats For video that means pixel format For audio that means channel sample they are references to shared objects When the negotiation mechanism computes the intersection of the formats supported at each end of a link
#define FFABS(a)
Absolute value, Note, INT_MIN / INT64_MIN result in undefined behavior as they are not representable ...
static void fir_fadd(AudioFIRContext *s, float *dst, const float *src, int nb_samples)
int ff_inlink_consume_samples(AVFilterLink *link, unsigned min, unsigned max, AVFrame **rframe)
Take samples from the link's FIFO and update the link's stats.
void ff_afir_init(AudioFIRDSPContext *dsp)
Rational number (pair of numerator and denominator).
int ff_append_inpad_free_name(AVFilterContext *f, AVFilterPad *p)
@ AV_OPT_TYPE_IMAGE_SIZE
offset must point to two consecutive integers
uint64_t channel_layout
channel layout of current buffer (see libavutil/channel_layout.h)
static void draw_line(AVFrame *out, int x0, int y0, int x1, int y1, uint32_t color)
static int convert_coeffs(AVFilterContext *ctx)
int ff_inlink_acknowledge_status(AVFilterLink *link, int *rstatus, int64_t *rpts)
Test and acknowledge the change of status on the link.
Undefined Behavior In the C some operations are like signed integer dereferencing freed accessing outside allocated Undefined Behavior must not occur in a C it is not safe even if the output of undefined operations is unused The unsafety may seem nit picking but Optimizing compilers have in fact optimized code on the assumption that no undefined Behavior occurs Optimizing code based on wrong assumptions can and has in some cases lead to effects beyond the output of computations The signed integer overflow problem in speed critical code Code which is highly optimized and works with signed integers sometimes has the problem that often the output of the computation does not c
#define AVFILTER_FLAG_DYNAMIC_OUTPUTS
The number of the filter outputs is not determined just by AVFilter.outputs.
static void fcmul_add_c(float *sum, const float *t, const float *c, ptrdiff_t len)
RDFTContext * av_rdft_init(int nbits, enum RDFTransformType trans)
Set up a real FFT.
#define NULL_IF_CONFIG_SMALL(x)
Return NULL if CONFIG_SMALL is true, otherwise the argument without modification.
float fmaxf(float, float)
static av_const double hypot(double x, double y)
#define AV_NOPTS_VALUE
Undefined timestamp value.
static int check_ir(AVFilterLink *link)
AVFilterContext * src
source filter
int ff_filter_process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
Generic processing of user supplied commands that are set in the same way as the filter options.
AVFilterFormatsConfig incfg
Lists of supported formats / etc.
it s the only field you need to keep assuming you have a context There is some magic you don t need to care about around this just let it vf offset
@ AV_PIX_FMT_RGB0
packed RGB 8:8:8, 32bpp, RGBXRGBX... X=unused/undefined
static void draw_response(AVFilterContext *ctx, AVFrame *out)
const AVFilter ff_af_afir
int sample_rate
samples per second
static int query_formats(AVFilterContext *ctx)
int nb_samples
number of audio samples (per channel) described by this frame
static int config_video(AVFilterLink *outlink)
#define i(width, name, range_min, range_max)
int w
agreed upon image width
uint8_t ** extended_data
pointers to the data planes/channels.
#define av_malloc_array(a, b)
int ff_filter_get_nb_threads(AVFilterContext *ctx)
Get number of threads for current filter instance.
AVSampleFormat
Audio sample formats.
static av_always_inline AVRational av_inv_q(AVRational q)
Invert a rational.
const char * name
Pad name.
int ff_inlink_queued_samples(AVFilterLink *link)
void * av_calloc(size_t nmemb, size_t size)
Tag MUST be and< 10hcoeff half pel interpolation filter coefficients, hcoeff[0] are the 2 middle coefficients[1] are the next outer ones and so on, resulting in a filter like:...eff[2], hcoeff[1], hcoeff[0], hcoeff[0], hcoeff[1], hcoeff[2] ... the sign of the coefficients is not explicitly stored but alternates after each coeff and coeff[0] is positive, so ...,+,-,+,-,+,+,-,+,-,+,... hcoeff[0] is not explicitly stored but found by subtracting the sum of all stored coefficients with signs from 32 hcoeff[0]=32 - hcoeff[1] - hcoeff[2] - ... a good choice for hcoeff and htaps is htaps=6 hcoeff={40,-10, 2} an alternative which requires more computations at both encoder and decoder side and may or may not be better is htaps=8 hcoeff={42,-14, 6,-2}ref_frames minimum of the number of available reference frames and max_ref_frames for example the first frame after a key frame always has ref_frames=1spatial_decomposition_type wavelet type 0 is a 9/7 symmetric compact integer wavelet 1 is a 5/3 symmetric compact integer wavelet others are reserved stored as delta from last, last is reset to 0 if always_reset||keyframeqlog quality(logarithmic quantizer scale) stored as delta from last, last is reset to 0 if always_reset||keyframemv_scale stored as delta from last, last is reset to 0 if always_reset||keyframe FIXME check that everything works fine if this changes between framesqbias dequantization bias stored as delta from last, last is reset to 0 if always_reset||keyframeblock_max_depth maximum depth of the block tree stored as delta from last, last is reset to 0 if always_reset||keyframequant_table quantization tableHighlevel bitstream structure:==============================--------------------------------------------|Header|--------------------------------------------|------------------------------------|||Block0||||split?||||yes no||||......... intra?||||:Block01 :yes no||||:Block02 :....... ..........||||:Block03 ::y DC ::ref index:||||:Block04 ::cb DC ::motion x :||||......... :cr DC ::motion y :||||....... ..........|||------------------------------------||------------------------------------|||Block1|||...|--------------------------------------------|------------ ------------ ------------|||Y subbands||Cb subbands||Cr subbands||||--- ---||--- ---||--- ---|||||LL0||HL0||||LL0||HL0||||LL0||HL0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||LH0||HH0||||LH0||HH0||||LH0||HH0|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HL1||LH1||||HL1||LH1||||HL1||LH1|||||--- ---||--- ---||--- ---||||--- ---||--- ---||--- ---|||||HH1||HL2||||HH1||HL2||||HH1||HL2|||||...||...||...|||------------ ------------ ------------|--------------------------------------------Decoding process:=================------------|||Subbands|------------||||------------|Intra DC||||LL0 subband prediction ------------|\ Dequantization ------------------- \||Reference frames|\ IDWT|------- -------|Motion \|||Frame 0||Frame 1||Compensation . OBMC v -------|------- -------|--------------. \------> Frame n output Frame Frame<----------------------------------/|...|------------------- Range Coder:============Binary Range Coder:------------------- The implemented range coder is an adapted version based upon "Range encoding: an algorithm for removing redundancy from a digitised message." by G. N. N. Martin. The symbols encoded by the Snow range coder are bits(0|1). The associated probabilities are not fix but change depending on the symbol mix seen so far. bit seen|new state ---------+----------------------------------------------- 0|256 - state_transition_table[256 - old_state];1|state_transition_table[old_state];state_transition_table={ 0, 0, 0, 0, 0, 0, 0, 0, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110, 111, 112, 113, 114, 114, 115, 116, 117, 118, 119, 120, 121, 122, 123, 124, 125, 126, 127, 128, 129, 130, 131, 132, 133, 133, 134, 135, 136, 137, 138, 139, 140, 141, 142, 143, 144, 145, 146, 147, 148, 149, 150, 151, 152, 152, 153, 154, 155, 156, 157, 158, 159, 160, 161, 162, 163, 164, 165, 166, 167, 168, 169, 170, 171, 171, 172, 173, 174, 175, 176, 177, 178, 179, 180, 181, 182, 183, 184, 185, 186, 187, 188, 189, 190, 190, 191, 192, 194, 194, 195, 196, 197, 198, 199, 200, 201, 202, 202, 204, 205, 206, 207, 208, 209, 209, 210, 211, 212, 213, 215, 215, 216, 217, 218, 219, 220, 220, 222, 223, 224, 225, 226, 227, 227, 229, 229, 230, 231, 232, 234, 234, 235, 236, 237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 248, 0, 0, 0, 0, 0, 0, 0};FIXME Range Coding of integers:------------------------- FIXME Neighboring Blocks:===================left and top are set to the respective blocks unless they are outside of the image in which case they are set to the Null block top-left is set to the top left block unless it is outside of the image in which case it is set to the left block if this block has no larger parent block or it is at the left side of its parent block and the top right block is not outside of the image then the top right block is used for top-right else the top-left block is used Null block y, cb, cr are 128 level, ref, mx and my are 0 Motion Vector Prediction:=========================1. the motion vectors of all the neighboring blocks are scaled to compensate for the difference of reference frames scaled_mv=(mv *(256 *(current_reference+1)/(mv.reference+1))+128)> the median of the scaled left
static float power(float r, float g, float b, float max)
static int config_output(AVFilterLink *outlink)
int h
agreed upon image height
static int fir_channel(AVFilterContext *ctx, AVFrame *out, int ch)
AVRational time_base
Define the time base used by the PTS of the frames/samples which will pass through this link.
int ff_outlink_get_status(AVFilterLink *link)
Get the status on an output link.
#define AVFILTER_FLAG_SLICE_THREADS
The filter supports multithreading by splitting frames into multiple parts and processing them concur...
static int fir_frame(AudioFIRContext *s, AVFrame *in, AVFilterLink *outlink)
int ff_append_outpad(AVFilterContext *f, AVFilterPad *p)
const uint8_t avpriv_cga_font[2048]
static av_cold int init(AVFilterContext *ctx)
av_cold AVFloatDSPContext * avpriv_float_dsp_alloc(int bit_exact)
Allocate a float DSP context.
static int init_segment(AVFilterContext *ctx, AudioFIRSegment *seg, int offset, int nb_partitions, int part_size)
#define flags(name, subs,...)
static int process_command(AVFilterContext *ctx, const char *cmd, const char *arg, char *res, int res_len, int flags)
#define AVERROR_BUG
Internal bug, also see AVERROR_BUG2.
void av_rdft_end(RDFTContext *s)
int linesize[AV_NUM_DATA_POINTERS]
For video, a positive or negative value, which is typically indicating the size in bytes of each pict...
static const double coeff[2][5]
The exact code depends on how similar the blocks are and how related they are to the block
the definition of that something depends on the semantic of the filter The callback must examine the status of the filter s links and proceed accordingly The status of output links is stored in the status_in and status_out fields and tested by the ff_outlink_frame_wanted() function. If this function returns true
static av_always_inline int ff_filter_execute(AVFilterContext *ctx, avfilter_action_func *func, void *arg, int *ret, int nb_jobs)
static void drawtext(AVFrame *pic, int x, int y, const char *txt, uint32_t color)
void ff_filter_set_ready(AVFilterContext *filter, unsigned priority)
Mark a filter ready and schedule it for activation.