FFmpeg
 All Data Structures Namespaces Files Functions Variables Typedefs Enumerations Enumerator Macros Groups Pages
hevc_filter.c
Go to the documentation of this file.
1 /*
2  * HEVC video decoder
3  *
4  * Copyright (C) 2012 - 2013 Guillaume Martres
5  * Copyright (C) 2013 Seppo Tomperi
6  * Copyright (C) 2013 Wassim Hamidouche
7  *
8  * This file is part of FFmpeg.
9  *
10  * FFmpeg is free software; you can redistribute it and/or
11  * modify it under the terms of the GNU Lesser General Public
12  * License as published by the Free Software Foundation; either
13  * version 2.1 of the License, or (at your option) any later version.
14  *
15  * FFmpeg is distributed in the hope that it will be useful,
16  * but WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18  * Lesser General Public License for more details.
19  *
20  * You should have received a copy of the GNU Lesser General Public
21  * License along with FFmpeg; if not, write to the Free Software
22  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23  */
24 
25 #include "libavutil/common.h"
26 #include "libavutil/internal.h"
27 
28 #include "cabac_functions.h"
29 #include "golomb.h"
30 #include "hevc.h"
31 
32 #include "bit_depth_template.c"
33 
34 #define LUMA 0
35 #define CB 1
36 #define CR 2
37 
38 static const uint8_t tctable[54] = {
39  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, // QP 0...18
40  1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, // QP 19...37
41  5, 5, 6, 6, 7, 8, 9, 10, 11, 13, 14, 16, 18, 20, 22, 24 // QP 38...53
42 };
43 
44 static const uint8_t betatable[52] = {
45  0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 6, 7, 8, // QP 0...18
46  9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 20, 22, 24, 26, 28, 30, 32, 34, 36, // QP 19...37
47  38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64 // QP 38...51
48 };
49 
50 static int chroma_tc(HEVCContext *s, int qp_y, int c_idx, int tc_offset)
51 {
52  static const int qp_c[] = {
53  29, 30, 31, 32, 33, 33, 34, 34, 35, 35, 36, 36, 37, 37
54  };
55  int qp, qp_i, offset, idxt;
56 
57  // slice qp offset is not used for deblocking
58  if (c_idx == 1)
59  offset = s->pps->cb_qp_offset;
60  else
61  offset = s->pps->cr_qp_offset;
62 
63  qp_i = av_clip_c(qp_y + offset, 0, 57);
64  if (qp_i < 30)
65  qp = qp_i;
66  else if (qp_i > 43)
67  qp = qp_i - 6;
68  else
69  qp = qp_c[qp_i - 30];
70 
71  idxt = av_clip_c(qp + DEFAULT_INTRA_TC_OFFSET + tc_offset, 0, 53);
72  return tctable[idxt];
73 }
74 
75 static int get_qPy_pred(HEVCContext *s, int xC, int yC,
76  int xBase, int yBase, int log2_cb_size)
77 {
78  HEVCLocalContext *lc = s->HEVClc;
79  int ctb_size_mask = (1 << s->sps->log2_ctb_size) - 1;
80  int MinCuQpDeltaSizeMask = (1 << (s->sps->log2_ctb_size -
81  s->pps->diff_cu_qp_delta_depth)) - 1;
82  int xQgBase = xBase - (xBase & MinCuQpDeltaSizeMask);
83  int yQgBase = yBase - (yBase & MinCuQpDeltaSizeMask);
84  int min_cb_width = s->sps->min_cb_width;
85  int x_cb = xQgBase >> s->sps->log2_min_cb_size;
86  int y_cb = yQgBase >> s->sps->log2_min_cb_size;
87  int availableA = (xBase & ctb_size_mask) &&
88  (xQgBase & ctb_size_mask);
89  int availableB = (yBase & ctb_size_mask) &&
90  (yQgBase & ctb_size_mask);
91  int qPy_pred, qPy_a, qPy_b;
92 
93  // qPy_pred
94  if (lc->first_qp_group || (!xQgBase && !yQgBase)) {
96  qPy_pred = s->sh.slice_qp;
97  } else {
98  qPy_pred = lc->qPy_pred;
99  }
100 
101  // qPy_a
102  if (availableA == 0)
103  qPy_a = qPy_pred;
104  else
105  qPy_a = s->qp_y_tab[(x_cb - 1) + y_cb * min_cb_width];
106 
107  // qPy_b
108  if (availableB == 0)
109  qPy_b = qPy_pred;
110  else
111  qPy_b = s->qp_y_tab[x_cb + (y_cb - 1) * min_cb_width];
112 
113  av_assert2(qPy_a >= -s->sps->qp_bd_offset && qPy_a < 52);
114  av_assert2(qPy_b >= -s->sps->qp_bd_offset && qPy_b < 52);
115 
116  return (qPy_a + qPy_b + 1) >> 1;
117 }
118 
119 void ff_hevc_set_qPy(HEVCContext *s, int xC, int yC,
120  int xBase, int yBase, int log2_cb_size)
121 {
122  int qp_y = get_qPy_pred(s, xC, yC, xBase, yBase, log2_cb_size);
123 
124  if (s->HEVClc->tu.cu_qp_delta != 0) {
125  int off = s->sps->qp_bd_offset;
126  s->HEVClc->qp_y = FFUMOD(qp_y + s->HEVClc->tu.cu_qp_delta + 52 + 2 * off,
127  52 + off) - off;
128  } else
129  s->HEVClc->qp_y = qp_y;
130 }
131 
132 static int get_qPy(HEVCContext *s, int xC, int yC)
133 {
134  int log2_min_cb_size = s->sps->log2_min_cb_size;
135  int x = xC >> log2_min_cb_size;
136  int y = yC >> log2_min_cb_size;
137  return s->qp_y_tab[x + y * s->sps->min_cb_width];
138 }
139 
140 static void copy_CTB(uint8_t *dst, uint8_t *src,
141  int width, int height, int stride)
142 {
143  int i;
144 
145  for (i = 0; i < height; i++) {
146  memcpy(dst, src, width);
147  dst += stride;
148  src += stride;
149  }
150 }
151 
152 #define CTB(tab, x, y) ((tab)[(y) * s->sps->ctb_width + (x)])
153 
154 static void sao_filter_CTB(HEVCContext *s, int x, int y)
155 {
156  // TODO: This should be easily parallelizable
157  // TODO: skip CBs when (cu_transquant_bypass_flag || (pcm_loop_filter_disable_flag && pcm_flag))
158  int c_idx = 0;
159  int class = 1, class_index;
160  int edges[4]; // 0 left 1 top 2 right 3 bottom
161  SAOParams *sao[4];
162  int classes[4];
163  int x_shift = 0, y_shift = 0;
164  int x_ctb = x >> s->sps->log2_ctb_size;
165  int y_ctb = y >> s->sps->log2_ctb_size;
166  int ctb_addr_rs = y_ctb * s->sps->ctb_width + x_ctb;
167  int ctb_addr_ts = s->pps->ctb_addr_rs_to_ts[ctb_addr_rs];
168 
169  // flags indicating unfilterable edges
170  uint8_t vert_edge[] = { 0, 0, 0, 0 };
171  uint8_t horiz_edge[] = { 0, 0, 0, 0 };
172  uint8_t diag_edge[] = { 0, 0, 0, 0 };
173  uint8_t lfase[3]; // current, above, left
174  uint8_t no_tile_filter = s->pps->tiles_enabled_flag &&
176  uint8_t left_tile_edge = 0;
177  uint8_t up_tile_edge = 0;
178 
179  sao[0] = &CTB(s->sao, x_ctb, y_ctb);
180  edges[0] = x_ctb == 0;
181  edges[1] = y_ctb == 0;
182  edges[2] = x_ctb == s->sps->ctb_width - 1;
183  edges[3] = y_ctb == s->sps->ctb_height - 1;
184  lfase[0] = CTB(s->filter_slice_edges, x_ctb, y_ctb);
185  classes[0] = 0;
186 
187  if (!edges[0]) {
188  left_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs-1]];
189  sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb);
190  vert_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb)) || left_tile_edge;
191  vert_edge[2] = vert_edge[0];
192  lfase[2] = CTB(s->filter_slice_edges, x_ctb - 1, y_ctb);
193  classes[class] = 2;
194  class++;
195  x_shift = 8;
196  }
197 
198  if (!edges[1]) {
199  up_tile_edge = no_tile_filter && s->pps->tile_id[ctb_addr_ts] != s->pps->tile_id[s->pps->ctb_addr_rs_to_ts[ctb_addr_rs - s->sps->ctb_width]];
200  sao[class] = &CTB(s->sao, x_ctb, y_ctb - 1);
201  horiz_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) || up_tile_edge;
202  horiz_edge[1] = horiz_edge[0];
203  lfase[1] = CTB(s->filter_slice_edges, x_ctb, y_ctb - 1);
204  classes[class] = 1;
205  class++;
206  y_shift = 4;
207 
208  if (!edges[0]) {
209  classes[class] = 3;
210  sao[class] = &CTB(s->sao, x_ctb - 1, y_ctb - 1);
211  class++;
212 
213  // Tile check here is done current CTB row/col, not above/left like you'd expect,
214  //but that is because the tile boundary always extends through the whole pic
215  vert_edge[1] = (!lfase[1] && CTB(s->tab_slice_address, x_ctb, y_ctb - 1) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge;
216  vert_edge[3] = vert_edge[1];
217  horiz_edge[2] = (!lfase[2] && CTB(s->tab_slice_address, x_ctb - 1, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || up_tile_edge;
218  horiz_edge[3] = horiz_edge[2];
219  diag_edge[0] = (!lfase[0] && CTB(s->tab_slice_address, x_ctb, y_ctb) != CTB(s->tab_slice_address, x_ctb - 1, y_ctb - 1)) || left_tile_edge || up_tile_edge;
220  diag_edge[3] = diag_edge[0];
221 
222  // Does left CTB comes after above CTB?
223  if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) >
224  CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
225  diag_edge[2] = !lfase[2] || left_tile_edge || up_tile_edge;
226  diag_edge[1] = diag_edge[2];
227  } else if (CTB(s->tab_slice_address, x_ctb - 1, y_ctb) <
228  CTB(s->tab_slice_address, x_ctb, y_ctb - 1)) {
229  diag_edge[1] = !lfase[1] || left_tile_edge || up_tile_edge;
230  diag_edge[2] = diag_edge[1];
231  } else {
232  // Same slice, only consider tiles
233  diag_edge[2] = left_tile_edge || up_tile_edge;
234  diag_edge[1] = diag_edge[2];
235  }
236  }
237  }
238 
239  for (c_idx = 0; c_idx < 3; c_idx++) {
240  int chroma = c_idx ? 1 : 0;
241  int x0 = x >> chroma;
242  int y0 = y >> chroma;
243  int stride = s->frame->linesize[c_idx];
244  int ctb_size = (1 << (s->sps->log2_ctb_size)) >> s->sps->hshift[c_idx];
245  int width = FFMIN(ctb_size,
246  (s->sps->width >> s->sps->hshift[c_idx]) - x0);
247  int height = FFMIN(ctb_size,
248  (s->sps->height >> s->sps->vshift[c_idx]) - y0);
249 
250  uint8_t *src = &s->frame->data[c_idx][y0 * stride + (x0 << s->sps->pixel_shift)];
251  uint8_t *dst = &s->sao_frame->data[c_idx][y0 * stride + (x0 << s->sps->pixel_shift)];
252  int offset = (y_shift >> chroma) * stride + ((x_shift >> chroma) << s->sps->pixel_shift);
253 
254  copy_CTB(dst - offset, src - offset,
255  (edges[2] ? width + (x_shift >> chroma) : width) << s->sps->pixel_shift,
256  (edges[3] ? height + (y_shift >> chroma) : height), stride);
257 
258  for (class_index = 0; class_index < class; class_index++) {
259 
260  switch (sao[class_index]->type_idx[c_idx]) {
261  case SAO_BAND:
262  s->hevcdsp.sao_band_filter[classes[class_index]](dst, src,
263  stride,
264  sao[class_index],
265  edges, width,
266  height, c_idx);
267  break;
268  case SAO_EDGE:
269  s->hevcdsp.sao_edge_filter[classes[class_index]](dst, src,
270  stride,
271  sao[class_index],
272  edges, width,
273  height, c_idx,
274  vert_edge[classes[class_index]],
275  horiz_edge[classes[class_index]],
276  diag_edge[classes[class_index]]);
277  break;
278  }
279  }
280  }
281 }
282 
283 static int get_pcm(HEVCContext *s, int x, int y)
284 {
285  int log2_min_pu_size = s->sps->log2_min_pu_size;
286  int x_pu, y_pu;
287 
288  if (x < 0 || y < 0)
289  return 2;
290 
291  x_pu = x >> log2_min_pu_size;
292  y_pu = y >> log2_min_pu_size;
293 
294  if (x_pu >= s->sps->min_pu_width || y_pu >= s->sps->min_pu_height)
295  return 2;
296  return s->is_pcm[y_pu * s->sps->min_pu_width + x_pu];
297 }
298 
299 #define TC_CALC(qp, bs) \
300  tctable[av_clip((qp) + DEFAULT_INTRA_TC_OFFSET * ((bs) - 1) + \
301  (tc_offset >> 1 << 1), \
302  0, MAX_QP + DEFAULT_INTRA_TC_OFFSET)]
303 
304 static void deblocking_filter_CTB(HEVCContext *s, int x0, int y0)
305 {
306  uint8_t *src;
307  int x, y;
308  int chroma;
309  int c_tc[2], beta[2], tc[2];
310  uint8_t no_p[2] = { 0 };
311  uint8_t no_q[2] = { 0 };
312 
313  int log2_ctb_size = s->sps->log2_ctb_size;
314  int x_end, y_end;
315  int ctb_size = 1 << log2_ctb_size;
316  int ctb = (x0 >> log2_ctb_size) +
317  (y0 >> log2_ctb_size) * s->sps->ctb_width;
318  int cur_tc_offset = s->deblock[ctb].tc_offset;
319  int cur_beta_offset = s->deblock[ctb].beta_offset;
320  int left_tc_offset, left_beta_offset;
321  int tc_offset, beta_offset;
322  int pcmf = (s->sps->pcm_enabled_flag &&
325 
326  if (x0) {
327  left_tc_offset = s->deblock[ctb - 1].tc_offset;
328  left_beta_offset = s->deblock[ctb - 1].beta_offset;
329  }
330 
331  x_end = x0 + ctb_size;
332  if (x_end > s->sps->width)
333  x_end = s->sps->width;
334  y_end = y0 + ctb_size;
335  if (y_end > s->sps->height)
336  y_end = s->sps->height;
337 
338  tc_offset = cur_tc_offset;
339  beta_offset = cur_beta_offset;
340 
341  // vertical filtering luma
342  for (y = y0; y < y_end; y += 8) {
343  for (x = x0 ? x0 : 8; x < x_end; x += 8) {
344  const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
345  const int bs1 = s->vertical_bs[(x >> 3) + ((y + 4) >> 2) * s->bs_width];
346  if (bs0 || bs1) {
347  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
348  const int qp1 = (get_qPy(s, x - 1, y + 4) + get_qPy(s, x, y + 4) + 1) >> 1;
349 
350  beta[0] = betatable[av_clip(qp0 + beta_offset, 0, MAX_QP)];
351  beta[1] = betatable[av_clip(qp1 + beta_offset, 0, MAX_QP)];
352  tc[0] = bs0 ? TC_CALC(qp0, bs0) : 0;
353  tc[1] = bs1 ? TC_CALC(qp1, bs1) : 0;
354  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
355  if (pcmf) {
356  no_p[0] = get_pcm(s, x - 1, y);
357  no_p[1] = get_pcm(s, x - 1, y + 4);
358  no_q[0] = get_pcm(s, x, y);
359  no_q[1] = get_pcm(s, x, y + 4);
361  s->frame->linesize[LUMA],
362  beta, tc, no_p, no_q);
363  } else
365  s->frame->linesize[LUMA],
366  beta, tc, no_p, no_q);
367  }
368  }
369  }
370 
371  // vertical filtering chroma
372  for (chroma = 1; chroma <= 2; chroma++) {
373  for (y = y0; y < y_end; y += 16) {
374  for (x = x0 ? x0 : 16; x < x_end; x += 16) {
375  const int bs0 = s->vertical_bs[(x >> 3) + (y >> 2) * s->bs_width];
376  const int bs1 = s->vertical_bs[(x >> 3) + ((y + 8) >> 2) * s->bs_width];
377  if ((bs0 == 2) || (bs1 == 2)) {
378  const int qp0 = (get_qPy(s, x - 1, y) + get_qPy(s, x, y) + 1) >> 1;
379  const int qp1 = (get_qPy(s, x - 1, y + 8) + get_qPy(s, x, y + 8) + 1) >> 1;
380 
381  c_tc[0] = (bs0 == 2) ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
382  c_tc[1] = (bs1 == 2) ? chroma_tc(s, qp1, chroma, tc_offset) : 0;
383  src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->sps->pixel_shift)];
384  if (pcmf) {
385  no_p[0] = get_pcm(s, x - 1, y);
386  no_p[1] = get_pcm(s, x - 1, y + 8);
387  no_q[0] = get_pcm(s, x, y);
388  no_q[1] = get_pcm(s, x, y + 8);
390  s->frame->linesize[chroma],
391  c_tc, no_p, no_q);
392  } else
394  s->frame->linesize[chroma],
395  c_tc, no_p, no_q);
396  }
397  }
398  }
399  }
400 
401  // horizontal filtering luma
402  if (x_end != s->sps->width)
403  x_end -= 8;
404  for (y = y0 ? y0 : 8; y < y_end; y += 8) {
405  for (x = x0 ? x0 - 8 : 0; x < x_end; x += 8) {
406  const int bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
407  const int bs1 = s->horizontal_bs[(x + 4 + y * s->bs_width) >> 2];
408  if (bs0 || bs1) {
409  const int qp0 = (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1;
410  const int qp1 = (get_qPy(s, x + 4, y - 1) + get_qPy(s, x + 4, y) + 1) >> 1;
411 
412  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
413  beta_offset = x >= x0 ? cur_beta_offset : left_beta_offset;
414 
415  beta[0] = betatable[av_clip(qp0 + beta_offset, 0, MAX_QP)];
416  beta[1] = betatable[av_clip(qp1 + beta_offset, 0, MAX_QP)];
417  tc[0] = bs0 ? TC_CALC(qp0, bs0) : 0;
418  tc[1] = bs1 ? TC_CALC(qp1, bs1) : 0;
419  src = &s->frame->data[LUMA][y * s->frame->linesize[LUMA] + (x << s->sps->pixel_shift)];
420  if (pcmf) {
421  no_p[0] = get_pcm(s, x, y - 1);
422  no_p[1] = get_pcm(s, x + 4, y - 1);
423  no_q[0] = get_pcm(s, x, y);
424  no_q[1] = get_pcm(s, x + 4, y);
426  s->frame->linesize[LUMA],
427  beta, tc, no_p, no_q);
428  } else
430  s->frame->linesize[LUMA],
431  beta, tc, no_p, no_q);
432  }
433  }
434  }
435 
436  // horizontal filtering chroma
437  for (chroma = 1; chroma <= 2; chroma++) {
438  for (y = y0 ? y0 : 16; y < y_end; y += 16) {
439  for (x = x0 - 8; x < x_end; x += 16) {
440  int bs0, bs1;
441  // to make sure no memory access over boundary when x = -8
442  // TODO: simplify with row based deblocking
443  if (x < 0) {
444  bs0 = 0;
445  bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
446  } else if (x >= x_end - 8) {
447  bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
448  bs1 = 0;
449  } else {
450  bs0 = s->horizontal_bs[(x + y * s->bs_width) >> 2];
451  bs1 = s->horizontal_bs[(x + 8 + y * s->bs_width) >> 2];
452  }
453 
454  if ((bs0 == 2) || (bs1 == 2)) {
455  const int qp0 = bs0 == 2 ? (get_qPy(s, x, y - 1) + get_qPy(s, x, y) + 1) >> 1 : 0;
456  const int qp1 = bs1 == 2 ? (get_qPy(s, x + 8, y - 1) + get_qPy(s, x + 8, y) + 1) >> 1 : 0;
457 
458  tc_offset = x >= x0 ? cur_tc_offset : left_tc_offset;
459  c_tc[0] = bs0 == 2 ? chroma_tc(s, qp0, chroma, tc_offset) : 0;
460  c_tc[1] = bs1 == 2 ? chroma_tc(s, qp1, chroma, cur_tc_offset) : 0;
461  src = &s->frame->data[chroma][y / 2 * s->frame->linesize[chroma] + ((x / 2) << s->sps->pixel_shift)];
462  if (pcmf) {
463  no_p[0] = get_pcm(s, x, y - 1);
464  no_p[1] = get_pcm(s, x + 8, y - 1);
465  no_q[0] = get_pcm(s, x, y);
466  no_q[1] = get_pcm(s, x + 8, y);
468  s->frame->linesize[chroma],
469  c_tc, no_p, no_q);
470  } else
472  s->frame->linesize[chroma],
473  c_tc, no_p, no_q);
474  }
475  }
476  }
477  }
478 }
479 
481  uint8_t curr_cbf_luma, MvField *neigh,
482  uint8_t neigh_cbf_luma,
483  RefPicList *neigh_refPicList,
484  int tu_border)
485 {
486  int mvs = curr->pred_flag[0] + curr->pred_flag[1];
487 
488  if (tu_border) {
489  if (curr->is_intra || neigh->is_intra)
490  return 2;
491  if (curr_cbf_luma || neigh_cbf_luma)
492  return 1;
493  }
494 
495  if (mvs == neigh->pred_flag[0] + neigh->pred_flag[1]) {
496  if (mvs == 2) {
497  // same L0 and L1
498  if (s->ref->refPicList[0].list[curr->ref_idx[0]] == neigh_refPicList[0].list[neigh->ref_idx[0]] &&
499  s->ref->refPicList[0].list[curr->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]] &&
500  neigh_refPicList[0].list[neigh->ref_idx[0]] == neigh_refPicList[1].list[neigh->ref_idx[1]]) {
501  if ((abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
502  abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4) &&
503  (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
504  abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4))
505  return 1;
506  else
507  return 0;
508  } else if (neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
509  neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
510  if (abs(neigh->mv[0].x - curr->mv[0].x) >= 4 || abs(neigh->mv[0].y - curr->mv[0].y) >= 4 ||
511  abs(neigh->mv[1].x - curr->mv[1].x) >= 4 || abs(neigh->mv[1].y - curr->mv[1].y) >= 4)
512  return 1;
513  else
514  return 0;
515  } else if (neigh_refPicList[1].list[neigh->ref_idx[1]] == s->ref->refPicList[0].list[curr->ref_idx[0]] &&
516  neigh_refPicList[0].list[neigh->ref_idx[0]] == s->ref->refPicList[1].list[curr->ref_idx[1]]) {
517  if (abs(neigh->mv[1].x - curr->mv[0].x) >= 4 || abs(neigh->mv[1].y - curr->mv[0].y) >= 4 ||
518  abs(neigh->mv[0].x - curr->mv[1].x) >= 4 || abs(neigh->mv[0].y - curr->mv[1].y) >= 4)
519  return 1;
520  else
521  return 0;
522  } else {
523  return 1;
524  }
525  } else { // 1 MV
526  Mv A, B;
527  int ref_A, ref_B;
528 
529  if (curr->pred_flag[0]) {
530  A = curr->mv[0];
531  ref_A = s->ref->refPicList[0].list[curr->ref_idx[0]];
532  } else {
533  A = curr->mv[1];
534  ref_A = s->ref->refPicList[1].list[curr->ref_idx[1]];
535  }
536 
537  if (neigh->pred_flag[0]) {
538  B = neigh->mv[0];
539  ref_B = neigh_refPicList[0].list[neigh->ref_idx[0]];
540  } else {
541  B = neigh->mv[1];
542  ref_B = neigh_refPicList[1].list[neigh->ref_idx[1]];
543  }
544 
545  if (ref_A == ref_B) {
546  if (abs(A.x - B.x) >= 4 || abs(A.y - B.y) >= 4)
547  return 1;
548  else
549  return 0;
550  } else
551  return 1;
552  }
553  }
554 
555  return 1;
556 }
557 
559  int log2_trafo_size,
560  int slice_or_tiles_up_boundary,
561  int slice_or_tiles_left_boundary)
562 {
563  MvField *tab_mvf = s->ref->tab_mvf;
564  int log2_min_pu_size = s->sps->log2_min_pu_size;
565  int log2_min_tu_size = s->sps->log2_min_tb_size;
566  int min_pu_width = s->sps->min_pu_width;
567  int min_tu_width = s->sps->min_tb_width;
568  int is_intra = tab_mvf[(y0 >> log2_min_pu_size) * min_pu_width +
569  (x0 >> log2_min_pu_size)].is_intra;
570  int i, j, bs;
571 
572  if (y0 > 0 && (y0 & 7) == 0) {
573  int yp_pu = (y0 - 1) >> log2_min_pu_size;
574  int yq_pu = y0 >> log2_min_pu_size;
575  int yp_tu = (y0 - 1) >> log2_min_tu_size;
576  int yq_tu = y0 >> log2_min_tu_size;
577 
578  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
579  int x_pu = (x0 + i) >> log2_min_pu_size;
580  int x_tu = (x0 + i) >> log2_min_tu_size;
581  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
582  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
583  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
584  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
585  RefPicList *top_refPicList = ff_hevc_get_ref_list(s, s->ref,
586  x0 + i, y0 - 1);
587 
588  bs = boundary_strength(s, curr, curr_cbf_luma,
589  top, top_cbf_luma, top_refPicList, 1);
591  (slice_or_tiles_up_boundary & 1) &&
592  (y0 % (1 << s->sps->log2_ctb_size)) == 0)
593  bs = 0;
595  (slice_or_tiles_up_boundary & 2) &&
596  (y0 % (1 << s->sps->log2_ctb_size)) == 0)
597  bs = 0;
598  if (y0 == 0 || s->sh.disable_deblocking_filter_flag == 1)
599  bs = 0;
600  if (bs)
601  s->horizontal_bs[((x0 + i) + y0 * s->bs_width) >> 2] = bs;
602  }
603  }
604 
605  // bs for TU internal horizontal PU boundaries
606  if (log2_trafo_size > s->sps->log2_min_pu_size && !is_intra)
607  for (j = 8; j < (1 << log2_trafo_size); j += 8) {
608  int yp_pu = (y0 + j - 1) >> log2_min_pu_size;
609  int yq_pu = (y0 + j) >> log2_min_pu_size;
610  int yp_tu = (y0 + j - 1) >> log2_min_tu_size;
611  int yq_tu = (y0 + j) >> log2_min_tu_size;
612 
613  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
614  int x_pu = (x0 + i) >> log2_min_pu_size;
615  int x_tu = (x0 + i) >> log2_min_tu_size;
616  MvField *top = &tab_mvf[yp_pu * min_pu_width + x_pu];
617  MvField *curr = &tab_mvf[yq_pu * min_pu_width + x_pu];
618  uint8_t top_cbf_luma = s->cbf_luma[yp_tu * min_tu_width + x_tu];
619  uint8_t curr_cbf_luma = s->cbf_luma[yq_tu * min_tu_width + x_tu];
620  RefPicList *top_refPicList = ff_hevc_get_ref_list(s, s->ref,
621  x0 + i,
622  y0 + j - 1);
623 
624  bs = boundary_strength(s, curr, curr_cbf_luma,
625  top, top_cbf_luma, top_refPicList, 0);
627  bs = 0;
628  if (bs)
629  s->horizontal_bs[((x0 + i) + (y0 + j) * s->bs_width) >> 2] = bs;
630  }
631  }
632 
633  // bs for vertical TU boundaries
634  if (x0 > 0 && (x0 & 7) == 0) {
635  int xp_pu = (x0 - 1) >> log2_min_pu_size;
636  int xq_pu = x0 >> log2_min_pu_size;
637  int xp_tu = (x0 - 1) >> log2_min_tu_size;
638  int xq_tu = x0 >> log2_min_tu_size;
639 
640  for (i = 0; i < (1 << log2_trafo_size); i += 4) {
641  int y_pu = (y0 + i) >> log2_min_pu_size;
642  int y_tu = (y0 + i) >> log2_min_tu_size;
643  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
644  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
645 
646  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
647  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
648  RefPicList *left_refPicList = ff_hevc_get_ref_list(s, s->ref,
649  x0 - 1, y0 + i);
650 
651  bs = boundary_strength(s, curr, curr_cbf_luma,
652  left, left_cbf_luma, left_refPicList, 1);
654  (slice_or_tiles_left_boundary & 1) &&
655  (x0 % (1 << s->sps->log2_ctb_size)) == 0)
656  bs = 0;
658  (slice_or_tiles_left_boundary & 2) &&
659  (x0 % (1 << s->sps->log2_ctb_size)) == 0)
660  bs = 0;
661  if (x0 == 0 || s->sh.disable_deblocking_filter_flag == 1)
662  bs = 0;
663  if (bs)
664  s->vertical_bs[(x0 >> 3) + ((y0 + i) >> 2) * s->bs_width] = bs;
665  }
666  }
667 
668  // bs for TU internal vertical PU boundaries
669  if (log2_trafo_size > log2_min_pu_size && !is_intra)
670  for (j = 0; j < (1 << log2_trafo_size); j += 4) {
671  int y_pu = (y0 + j) >> log2_min_pu_size;
672  int y_tu = (y0 + j) >> log2_min_tu_size;
673 
674  for (i = 8; i < (1 << log2_trafo_size); i += 8) {
675  int xp_pu = (x0 + i - 1) >> log2_min_pu_size;
676  int xq_pu = (x0 + i) >> log2_min_pu_size;
677  int xp_tu = (x0 + i - 1) >> log2_min_tu_size;
678  int xq_tu = (x0 + i) >> log2_min_tu_size;
679  MvField *left = &tab_mvf[y_pu * min_pu_width + xp_pu];
680  MvField *curr = &tab_mvf[y_pu * min_pu_width + xq_pu];
681  uint8_t left_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xp_tu];
682  uint8_t curr_cbf_luma = s->cbf_luma[y_tu * min_tu_width + xq_tu];
683  RefPicList *left_refPicList = ff_hevc_get_ref_list(s, s->ref,
684  x0 + i - 1,
685  y0 + j);
686 
687  bs = boundary_strength(s, curr, curr_cbf_luma,
688  left, left_cbf_luma, left_refPicList, 0);
690  bs = 0;
691  if (bs)
692  s->vertical_bs[((x0 + i) >> 3) + ((y0 + j) >> 2) * s->bs_width] = bs;
693  }
694  }
695 }
696 
697 #undef LUMA
698 #undef CB
699 #undef CR
700 
701 void ff_hevc_hls_filter(HEVCContext *s, int x, int y)
702 {
703  deblocking_filter_CTB(s, x, y);
704  if (s->sps->sao_enabled)
705  sao_filter_CTB(s, x, y);
706 }
707 
708 void ff_hevc_hls_filters(HEVCContext *s, int x_ctb, int y_ctb, int ctb_size)
709 {
710  if (y_ctb && x_ctb)
711  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb - ctb_size);
712  if (y_ctb && x_ctb >= s->sps->width - ctb_size) {
713  ff_hevc_hls_filter(s, x_ctb, y_ctb - ctb_size);
714  if (s->threads_type == FF_THREAD_FRAME )
715  ff_thread_report_progress(&s->ref->tf, y_ctb - ctb_size, 0);
716  }
717  if (x_ctb && y_ctb >= s->sps->height - ctb_size)
718  ff_hevc_hls_filter(s, x_ctb - ctb_size, y_ctb);
719 }