00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #include "common.h"
00028 #include "pca.h"
00029
00030 typedef struct PCA{
00031 int count;
00032 int n;
00033 double *covariance;
00034 double *mean;
00035 }PCA;
00036
00037 PCA *ff_pca_init(int n){
00038 PCA *pca;
00039 if(n<=0)
00040 return NULL;
00041
00042 pca= av_mallocz(sizeof(PCA));
00043 pca->n= n;
00044 pca->count=0;
00045 pca->covariance= av_mallocz(sizeof(double)*n*n);
00046 pca->mean= av_mallocz(sizeof(double)*n);
00047
00048 return pca;
00049 }
00050
00051 void ff_pca_free(PCA *pca){
00052 av_freep(&pca->covariance);
00053 av_freep(&pca->mean);
00054 av_free(pca);
00055 }
00056
00057 void ff_pca_add(PCA *pca, double *v){
00058 int i, j;
00059 const int n= pca->n;
00060
00061 for(i=0; i<n; i++){
00062 pca->mean[i] += v[i];
00063 for(j=i; j<n; j++)
00064 pca->covariance[j + i*n] += v[i]*v[j];
00065 }
00066 pca->count++;
00067 }
00068
00069 int ff_pca(PCA *pca, double *eigenvector, double *eigenvalue){
00070 int i, j, pass;
00071 int k=0;
00072 const int n= pca->n;
00073 double z[n];
00074
00075 memset(eigenvector, 0, sizeof(double)*n*n);
00076
00077 for(j=0; j<n; j++){
00078 pca->mean[j] /= pca->count;
00079 eigenvector[j + j*n] = 1.0;
00080 for(i=0; i<=j; i++){
00081 pca->covariance[j + i*n] /= pca->count;
00082 pca->covariance[j + i*n] -= pca->mean[i] * pca->mean[j];
00083 pca->covariance[i + j*n] = pca->covariance[j + i*n];
00084 }
00085 eigenvalue[j]= pca->covariance[j + j*n];
00086 z[j]= 0;
00087 }
00088
00089 for(pass=0; pass < 50; pass++){
00090 double sum=0;
00091
00092 for(i=0; i<n; i++)
00093 for(j=i+1; j<n; j++)
00094 sum += fabs(pca->covariance[j + i*n]);
00095
00096 if(sum == 0){
00097 for(i=0; i<n; i++){
00098 double maxvalue= -1;
00099 for(j=i; j<n; j++){
00100 if(eigenvalue[j] > maxvalue){
00101 maxvalue= eigenvalue[j];
00102 k= j;
00103 }
00104 }
00105 eigenvalue[k]= eigenvalue[i];
00106 eigenvalue[i]= maxvalue;
00107 for(j=0; j<n; j++){
00108 double tmp= eigenvector[k + j*n];
00109 eigenvector[k + j*n]= eigenvector[i + j*n];
00110 eigenvector[i + j*n]= tmp;
00111 }
00112 }
00113 return pass;
00114 }
00115
00116 for(i=0; i<n; i++){
00117 for(j=i+1; j<n; j++){
00118 double covar= pca->covariance[j + i*n];
00119 double t,c,s,tau,theta, h;
00120
00121 if(pass < 3 && fabs(covar) < sum / (5*n*n))
00122 continue;
00123 if(fabs(covar) == 0.0)
00124 continue;
00125 if(pass >=3 && fabs((eigenvalue[j]+z[j])/covar) > (1LL<<32) && fabs((eigenvalue[i]+z[i])/covar) > (1LL<<32)){
00126 pca->covariance[j + i*n]=0.0;
00127 continue;
00128 }
00129
00130 h= (eigenvalue[j]+z[j]) - (eigenvalue[i]+z[i]);
00131 theta=0.5*h/covar;
00132 t=1.0/(fabs(theta)+sqrt(1.0+theta*theta));
00133 if(theta < 0.0) t = -t;
00134
00135 c=1.0/sqrt(1+t*t);
00136 s=t*c;
00137 tau=s/(1.0+c);
00138 z[i] -= t*covar;
00139 z[j] += t*covar;
00140
00141 #define ROTATE(a,i,j,k,l) {\
00142 double g=a[j + i*n];\
00143 double h=a[l + k*n];\
00144 a[j + i*n]=g-s*(h+g*tau);\
00145 a[l + k*n]=h+s*(g-h*tau); }
00146 for(k=0; k<n; k++) {
00147 if(k!=i && k!=j){
00148 ROTATE(pca->covariance,FFMIN(k,i),FFMAX(k,i),FFMIN(k,j),FFMAX(k,j))
00149 }
00150 ROTATE(eigenvector,k,i,k,j)
00151 }
00152 pca->covariance[j + i*n]=0.0;
00153 }
00154 }
00155 for (i=0; i<n; i++) {
00156 eigenvalue[i] += z[i];
00157 z[i]=0.0;
00158 }
00159 }
00160
00161 return -1;
00162 }
00163
00164 #ifdef TEST
00165
00166 #undef printf
00167 #include <stdio.h>
00168 #include <stdlib.h>
00169 #include "lfg.h"
00170
00171 int main(void){
00172 PCA *pca;
00173 int i, j, k;
00174 #define LEN 8
00175 double eigenvector[LEN*LEN];
00176 double eigenvalue[LEN];
00177 AVLFG prng;
00178
00179 av_lfg_init(&prng, 1);
00180
00181 pca= ff_pca_init(LEN);
00182
00183 for(i=0; i<9000000; i++){
00184 double v[2*LEN+100];
00185 double sum=0;
00186 int pos = av_lfg_get(&prng) % LEN;
00187 int v2 = av_lfg_get(&prng) % 101 - 50;
00188 v[0] = av_lfg_get(&prng) % 101 - 50;
00189 for(j=1; j<8; j++){
00190 if(j<=pos) v[j]= v[0];
00191 else v[j]= v2;
00192 sum += v[j];
00193 }
00194
00195
00196
00197
00198
00199
00200
00201
00202 ff_pca_add(pca, v);
00203 }
00204
00205
00206 ff_pca(pca, eigenvector, eigenvalue);
00207 for(i=0; i<LEN; i++){
00208 pca->count= 1;
00209 pca->mean[i]= 0;
00210
00211
00212
00213
00214
00215 for(j=i; j<LEN; j++){
00216 printf("%f ", pca->covariance[i + j*LEN]);
00217 }
00218 printf("\n");
00219 }
00220
00221 for(i=0; i<LEN; i++){
00222 double v[LEN];
00223 double error=0;
00224 memset(v, 0, sizeof(v));
00225 for(j=0; j<LEN; j++){
00226 for(k=0; k<LEN; k++){
00227 v[j] += pca->covariance[FFMIN(k,j) + FFMAX(k,j)*LEN] * eigenvector[i + k*LEN];
00228 }
00229 v[j] /= eigenvalue[i];
00230 error += fabs(v[j] - eigenvector[i + j*LEN]);
00231 }
00232 printf("%f ", error);
00233 }
00234 printf("\n");
00235
00236 for(i=0; i<LEN; i++){
00237 for(j=0; j<LEN; j++){
00238 printf("%9.6f ", eigenvector[i + j*LEN]);
00239 }
00240 printf(" %9.1f %f\n", eigenvalue[i], eigenvalue[i]/eigenvalue[0]);
00241 }
00242
00243 return 0;
00244 }
00245 #endif