00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00027 #include "libavutil/lfg.h"
00028
00029 #include "avcodec.h"
00030 #include "get_bits.h"
00031 #include "lsp.h"
00032 #include "celp_math.h"
00033 #include "celp_filters.h"
00034 #include "acelp_filters.h"
00035 #include "acelp_vectors.h"
00036 #include "acelp_pitch_delay.h"
00037
00038 #define AMR_USE_16BIT_TABLES
00039 #include "amr.h"
00040
00041 #include "amrwbdata.h"
00042
00043 typedef struct {
00044 AMRWBFrame frame;
00045 enum Mode fr_cur_mode;
00046 uint8_t fr_quality;
00047 float isf_cur[LP_ORDER];
00048 float isf_q_past[LP_ORDER];
00049 float isf_past_final[LP_ORDER];
00050 double isp[4][LP_ORDER];
00051 double isp_sub4_past[LP_ORDER];
00052
00053 float lp_coef[4][LP_ORDER];
00054
00055 uint8_t base_pitch_lag;
00056 uint8_t pitch_lag_int;
00057
00058 float excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 2 + AMRWB_SFR_SIZE];
00059 float *excitation;
00060
00061 float pitch_vector[AMRWB_SFR_SIZE];
00062 float fixed_vector[AMRWB_SFR_SIZE];
00063
00064 float prediction_error[4];
00065 float pitch_gain[6];
00066 float fixed_gain[2];
00067
00068 float tilt_coef;
00069
00070 float prev_sparse_fixed_gain;
00071 uint8_t prev_ir_filter_nr;
00072 float prev_tr_gain;
00073
00074 float samples_az[LP_ORDER + AMRWB_SFR_SIZE];
00075 float samples_up[UPS_MEM_SIZE + AMRWB_SFR_SIZE];
00076 float samples_hb[LP_ORDER_16k + AMRWB_SFR_SIZE_16k];
00077
00078 float hpf_31_mem[2], hpf_400_mem[2];
00079 float demph_mem[1];
00080 float bpf_6_7_mem[HB_FIR_SIZE];
00081 float lpf_7_mem[HB_FIR_SIZE];
00082
00083 AVLFG prng;
00084 uint8_t first_frame;
00085 } AMRWBContext;
00086
00087 static av_cold int amrwb_decode_init(AVCodecContext *avctx)
00088 {
00089 AMRWBContext *ctx = avctx->priv_data;
00090 int i;
00091
00092 avctx->sample_fmt = AV_SAMPLE_FMT_FLT;
00093
00094 av_lfg_init(&ctx->prng, 1);
00095
00096 ctx->excitation = &ctx->excitation_buf[AMRWB_P_DELAY_MAX + LP_ORDER + 1];
00097 ctx->first_frame = 1;
00098
00099 for (i = 0; i < LP_ORDER; i++)
00100 ctx->isf_past_final[i] = isf_init[i] * (1.0f / (1 << 15));
00101
00102 for (i = 0; i < 4; i++)
00103 ctx->prediction_error[i] = MIN_ENERGY;
00104
00105 return 0;
00106 }
00107
00117 static int decode_mime_header(AMRWBContext *ctx, const uint8_t *buf)
00118 {
00119 GetBitContext gb;
00120 init_get_bits(&gb, buf, 8);
00121
00122
00123 skip_bits(&gb, 1);
00124 ctx->fr_cur_mode = get_bits(&gb, 4);
00125 ctx->fr_quality = get_bits1(&gb);
00126 skip_bits(&gb, 2);
00127
00128 return 1;
00129 }
00130
00138 static void decode_isf_indices_36b(uint16_t *ind, float *isf_q)
00139 {
00140 int i;
00141
00142 for (i = 0; i < 9; i++)
00143 isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
00144
00145 for (i = 0; i < 7; i++)
00146 isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
00147
00148 for (i = 0; i < 5; i++)
00149 isf_q[i] += dico21_isf_36b[ind[2]][i] * (1.0f / (1 << 15));
00150
00151 for (i = 0; i < 4; i++)
00152 isf_q[i + 5] += dico22_isf_36b[ind[3]][i] * (1.0f / (1 << 15));
00153
00154 for (i = 0; i < 7; i++)
00155 isf_q[i + 9] += dico23_isf_36b[ind[4]][i] * (1.0f / (1 << 15));
00156 }
00157
00165 static void decode_isf_indices_46b(uint16_t *ind, float *isf_q)
00166 {
00167 int i;
00168
00169 for (i = 0; i < 9; i++)
00170 isf_q[i] = dico1_isf[ind[0]][i] * (1.0f / (1 << 15));
00171
00172 for (i = 0; i < 7; i++)
00173 isf_q[i + 9] = dico2_isf[ind[1]][i] * (1.0f / (1 << 15));
00174
00175 for (i = 0; i < 3; i++)
00176 isf_q[i] += dico21_isf[ind[2]][i] * (1.0f / (1 << 15));
00177
00178 for (i = 0; i < 3; i++)
00179 isf_q[i + 3] += dico22_isf[ind[3]][i] * (1.0f / (1 << 15));
00180
00181 for (i = 0; i < 3; i++)
00182 isf_q[i + 6] += dico23_isf[ind[4]][i] * (1.0f / (1 << 15));
00183
00184 for (i = 0; i < 3; i++)
00185 isf_q[i + 9] += dico24_isf[ind[5]][i] * (1.0f / (1 << 15));
00186
00187 for (i = 0; i < 4; i++)
00188 isf_q[i + 12] += dico25_isf[ind[6]][i] * (1.0f / (1 << 15));
00189 }
00190
00199 static void isf_add_mean_and_past(float *isf_q, float *isf_past)
00200 {
00201 int i;
00202 float tmp;
00203
00204 for (i = 0; i < LP_ORDER; i++) {
00205 tmp = isf_q[i];
00206 isf_q[i] += isf_mean[i] * (1.0f / (1 << 15));
00207 isf_q[i] += PRED_FACTOR * isf_past[i];
00208 isf_past[i] = tmp;
00209 }
00210 }
00211
00219 static void interpolate_isp(double isp_q[4][LP_ORDER], const double *isp4_past)
00220 {
00221 int i, k;
00222
00223 for (k = 0; k < 3; k++) {
00224 float c = isfp_inter[k];
00225 for (i = 0; i < LP_ORDER; i++)
00226 isp_q[k][i] = (1.0 - c) * isp4_past[i] + c * isp_q[3][i];
00227 }
00228 }
00229
00241 static void decode_pitch_lag_high(int *lag_int, int *lag_frac, int pitch_index,
00242 uint8_t *base_lag_int, int subframe)
00243 {
00244 if (subframe == 0 || subframe == 2) {
00245 if (pitch_index < 376) {
00246 *lag_int = (pitch_index + 137) >> 2;
00247 *lag_frac = pitch_index - (*lag_int << 2) + 136;
00248 } else if (pitch_index < 440) {
00249 *lag_int = (pitch_index + 257 - 376) >> 1;
00250 *lag_frac = (pitch_index - (*lag_int << 1) + 256 - 376) << 1;
00251
00252 } else {
00253 *lag_int = pitch_index - 280;
00254 *lag_frac = 0;
00255 }
00256
00257 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
00258 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
00259
00260
00261
00262 } else {
00263 *lag_int = (pitch_index + 1) >> 2;
00264 *lag_frac = pitch_index - (*lag_int << 2);
00265 *lag_int += *base_lag_int;
00266 }
00267 }
00268
00274 static void decode_pitch_lag_low(int *lag_int, int *lag_frac, int pitch_index,
00275 uint8_t *base_lag_int, int subframe, enum Mode mode)
00276 {
00277 if (subframe == 0 || (subframe == 2 && mode != MODE_6k60)) {
00278 if (pitch_index < 116) {
00279 *lag_int = (pitch_index + 69) >> 1;
00280 *lag_frac = (pitch_index - (*lag_int << 1) + 68) << 1;
00281 } else {
00282 *lag_int = pitch_index - 24;
00283 *lag_frac = 0;
00284 }
00285
00286 *base_lag_int = av_clip(*lag_int - 8 - (*lag_frac < 0),
00287 AMRWB_P_DELAY_MIN, AMRWB_P_DELAY_MAX - 15);
00288 } else {
00289 *lag_int = (pitch_index + 1) >> 1;
00290 *lag_frac = (pitch_index - (*lag_int << 1)) << 1;
00291 *lag_int += *base_lag_int;
00292 }
00293 }
00294
00303 static void decode_pitch_vector(AMRWBContext *ctx,
00304 const AMRWBSubFrame *amr_subframe,
00305 const int subframe)
00306 {
00307 int pitch_lag_int, pitch_lag_frac;
00308 int i;
00309 float *exc = ctx->excitation;
00310 enum Mode mode = ctx->fr_cur_mode;
00311
00312 if (mode <= MODE_8k85) {
00313 decode_pitch_lag_low(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
00314 &ctx->base_pitch_lag, subframe, mode);
00315 } else
00316 decode_pitch_lag_high(&pitch_lag_int, &pitch_lag_frac, amr_subframe->adap,
00317 &ctx->base_pitch_lag, subframe);
00318
00319 ctx->pitch_lag_int = pitch_lag_int;
00320 pitch_lag_int += pitch_lag_frac > 0;
00321
00322
00323
00324 ff_acelp_interpolatef(exc, exc + 1 - pitch_lag_int,
00325 ac_inter, 4,
00326 pitch_lag_frac + (pitch_lag_frac > 0 ? 0 : 4),
00327 LP_ORDER, AMRWB_SFR_SIZE + 1);
00328
00329
00330
00331 if (amr_subframe->ltp) {
00332 memcpy(ctx->pitch_vector, exc, AMRWB_SFR_SIZE * sizeof(float));
00333 } else {
00334 for (i = 0; i < AMRWB_SFR_SIZE; i++)
00335 ctx->pitch_vector[i] = 0.18 * exc[i - 1] + 0.64 * exc[i] +
00336 0.18 * exc[i + 1];
00337 memcpy(exc, ctx->pitch_vector, AMRWB_SFR_SIZE * sizeof(float));
00338 }
00339 }
00340
00342 #define BIT_STR(x,lsb,len) (((x) >> (lsb)) & ((1 << (len)) - 1))
00343
00345 #define BIT_POS(x, p) (((x) >> (p)) & 1)
00346
00360 static inline void decode_1p_track(int *out, int code, int m, int off)
00361 {
00362 int pos = BIT_STR(code, 0, m) + off;
00363
00364 out[0] = BIT_POS(code, m) ? -pos : pos;
00365 }
00366
00367 static inline void decode_2p_track(int *out, int code, int m, int off)
00368 {
00369 int pos0 = BIT_STR(code, m, m) + off;
00370 int pos1 = BIT_STR(code, 0, m) + off;
00371
00372 out[0] = BIT_POS(code, 2*m) ? -pos0 : pos0;
00373 out[1] = BIT_POS(code, 2*m) ? -pos1 : pos1;
00374 out[1] = pos0 > pos1 ? -out[1] : out[1];
00375 }
00376
00377 static void decode_3p_track(int *out, int code, int m, int off)
00378 {
00379 int half_2p = BIT_POS(code, 2*m - 1) << (m - 1);
00380
00381 decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
00382 m - 1, off + half_2p);
00383 decode_1p_track(out + 2, BIT_STR(code, 2*m, m + 1), m, off);
00384 }
00385
00386 static void decode_4p_track(int *out, int code, int m, int off)
00387 {
00388 int half_4p, subhalf_2p;
00389 int b_offset = 1 << (m - 1);
00390
00391 switch (BIT_STR(code, 4*m - 2, 2)) {
00392 case 0:
00393 half_4p = BIT_POS(code, 4*m - 3) << (m - 1);
00394 subhalf_2p = BIT_POS(code, 2*m - 3) << (m - 2);
00395
00396 decode_2p_track(out, BIT_STR(code, 0, 2*m - 3),
00397 m - 2, off + half_4p + subhalf_2p);
00398 decode_2p_track(out + 2, BIT_STR(code, 2*m - 2, 2*m - 1),
00399 m - 1, off + half_4p);
00400 break;
00401 case 1:
00402 decode_1p_track(out, BIT_STR(code, 3*m - 2, m),
00403 m - 1, off);
00404 decode_3p_track(out + 1, BIT_STR(code, 0, 3*m - 2),
00405 m - 1, off + b_offset);
00406 break;
00407 case 2:
00408 decode_2p_track(out, BIT_STR(code, 2*m - 1, 2*m - 1),
00409 m - 1, off);
00410 decode_2p_track(out + 2, BIT_STR(code, 0, 2*m - 1),
00411 m - 1, off + b_offset);
00412 break;
00413 case 3:
00414 decode_3p_track(out, BIT_STR(code, m, 3*m - 2),
00415 m - 1, off);
00416 decode_1p_track(out + 3, BIT_STR(code, 0, m),
00417 m - 1, off + b_offset);
00418 break;
00419 }
00420 }
00421
00422 static void decode_5p_track(int *out, int code, int m, int off)
00423 {
00424 int half_3p = BIT_POS(code, 5*m - 1) << (m - 1);
00425
00426 decode_3p_track(out, BIT_STR(code, 2*m + 1, 3*m - 2),
00427 m - 1, off + half_3p);
00428
00429 decode_2p_track(out + 3, BIT_STR(code, 0, 2*m + 1), m, off);
00430 }
00431
00432 static void decode_6p_track(int *out, int code, int m, int off)
00433 {
00434 int b_offset = 1 << (m - 1);
00435
00436 int half_more = BIT_POS(code, 6*m - 5) << (m - 1);
00437 int half_other = b_offset - half_more;
00438
00439 switch (BIT_STR(code, 6*m - 4, 2)) {
00440 case 0:
00441 decode_1p_track(out, BIT_STR(code, 0, m),
00442 m - 1, off + half_more);
00443 decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
00444 m - 1, off + half_more);
00445 break;
00446 case 1:
00447 decode_1p_track(out, BIT_STR(code, 0, m),
00448 m - 1, off + half_other);
00449 decode_5p_track(out + 1, BIT_STR(code, m, 5*m - 5),
00450 m - 1, off + half_more);
00451 break;
00452 case 2:
00453 decode_2p_track(out, BIT_STR(code, 0, 2*m - 1),
00454 m - 1, off + half_other);
00455 decode_4p_track(out + 2, BIT_STR(code, 2*m - 1, 4*m - 4),
00456 m - 1, off + half_more);
00457 break;
00458 case 3:
00459 decode_3p_track(out, BIT_STR(code, 3*m - 2, 3*m - 2),
00460 m - 1, off);
00461 decode_3p_track(out + 3, BIT_STR(code, 0, 3*m - 2),
00462 m - 1, off + b_offset);
00463 break;
00464 }
00465 }
00466
00476 static void decode_fixed_vector(float *fixed_vector, const uint16_t *pulse_hi,
00477 const uint16_t *pulse_lo, const enum Mode mode)
00478 {
00479
00480
00481 int sig_pos[4][6];
00482 int spacing = (mode == MODE_6k60) ? 2 : 4;
00483 int i, j;
00484
00485 switch (mode) {
00486 case MODE_6k60:
00487 for (i = 0; i < 2; i++)
00488 decode_1p_track(sig_pos[i], pulse_lo[i], 5, 1);
00489 break;
00490 case MODE_8k85:
00491 for (i = 0; i < 4; i++)
00492 decode_1p_track(sig_pos[i], pulse_lo[i], 4, 1);
00493 break;
00494 case MODE_12k65:
00495 for (i = 0; i < 4; i++)
00496 decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
00497 break;
00498 case MODE_14k25:
00499 for (i = 0; i < 2; i++)
00500 decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
00501 for (i = 2; i < 4; i++)
00502 decode_2p_track(sig_pos[i], pulse_lo[i], 4, 1);
00503 break;
00504 case MODE_15k85:
00505 for (i = 0; i < 4; i++)
00506 decode_3p_track(sig_pos[i], pulse_lo[i], 4, 1);
00507 break;
00508 case MODE_18k25:
00509 for (i = 0; i < 4; i++)
00510 decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
00511 ((int) pulse_hi[i] << 14), 4, 1);
00512 break;
00513 case MODE_19k85:
00514 for (i = 0; i < 2; i++)
00515 decode_5p_track(sig_pos[i], (int) pulse_lo[i] +
00516 ((int) pulse_hi[i] << 10), 4, 1);
00517 for (i = 2; i < 4; i++)
00518 decode_4p_track(sig_pos[i], (int) pulse_lo[i] +
00519 ((int) pulse_hi[i] << 14), 4, 1);
00520 break;
00521 case MODE_23k05:
00522 case MODE_23k85:
00523 for (i = 0; i < 4; i++)
00524 decode_6p_track(sig_pos[i], (int) pulse_lo[i] +
00525 ((int) pulse_hi[i] << 11), 4, 1);
00526 break;
00527 }
00528
00529 memset(fixed_vector, 0, sizeof(float) * AMRWB_SFR_SIZE);
00530
00531 for (i = 0; i < 4; i++)
00532 for (j = 0; j < pulses_nb_per_mode_tr[mode][i]; j++) {
00533 int pos = (FFABS(sig_pos[i][j]) - 1) * spacing + i;
00534
00535 fixed_vector[pos] += sig_pos[i][j] < 0 ? -1.0 : 1.0;
00536 }
00537 }
00538
00547 static void decode_gains(const uint8_t vq_gain, const enum Mode mode,
00548 float *fixed_gain_factor, float *pitch_gain)
00549 {
00550 const int16_t *gains = (mode <= MODE_8k85 ? qua_gain_6b[vq_gain] :
00551 qua_gain_7b[vq_gain]);
00552
00553 *pitch_gain = gains[0] * (1.0f / (1 << 14));
00554 *fixed_gain_factor = gains[1] * (1.0f / (1 << 11));
00555 }
00556
00563
00564
00565 static void pitch_sharpening(AMRWBContext *ctx, float *fixed_vector)
00566 {
00567 int i;
00568
00569
00570 for (i = AMRWB_SFR_SIZE - 1; i != 0; i--)
00571 fixed_vector[i] -= fixed_vector[i - 1] * ctx->tilt_coef;
00572
00573
00574 for (i = ctx->pitch_lag_int; i < AMRWB_SFR_SIZE; i++)
00575 fixed_vector[i] += fixed_vector[i - ctx->pitch_lag_int] * 0.85;
00576 }
00577
00584
00585
00586 static float voice_factor(float *p_vector, float p_gain,
00587 float *f_vector, float f_gain)
00588 {
00589 double p_ener = (double) ff_dot_productf(p_vector, p_vector,
00590 AMRWB_SFR_SIZE) * p_gain * p_gain;
00591 double f_ener = (double) ff_dot_productf(f_vector, f_vector,
00592 AMRWB_SFR_SIZE) * f_gain * f_gain;
00593
00594 return (p_ener - f_ener) / (p_ener + f_ener);
00595 }
00596
00607 static float *anti_sparseness(AMRWBContext *ctx,
00608 float *fixed_vector, float *buf)
00609 {
00610 int ir_filter_nr;
00611
00612 if (ctx->fr_cur_mode > MODE_8k85)
00613 return fixed_vector;
00614
00615 if (ctx->pitch_gain[0] < 0.6) {
00616 ir_filter_nr = 0;
00617 } else if (ctx->pitch_gain[0] < 0.9) {
00618 ir_filter_nr = 1;
00619 } else
00620 ir_filter_nr = 2;
00621
00622
00623 if (ctx->fixed_gain[0] > 3.0 * ctx->fixed_gain[1]) {
00624 if (ir_filter_nr < 2)
00625 ir_filter_nr++;
00626 } else {
00627 int i, count = 0;
00628
00629 for (i = 0; i < 6; i++)
00630 if (ctx->pitch_gain[i] < 0.6)
00631 count++;
00632
00633 if (count > 2)
00634 ir_filter_nr = 0;
00635
00636 if (ir_filter_nr > ctx->prev_ir_filter_nr + 1)
00637 ir_filter_nr--;
00638 }
00639
00640
00641 ctx->prev_ir_filter_nr = ir_filter_nr;
00642
00643 ir_filter_nr += (ctx->fr_cur_mode == MODE_8k85);
00644
00645 if (ir_filter_nr < 2) {
00646 int i;
00647 const float *coef = ir_filters_lookup[ir_filter_nr];
00648
00649
00650
00651
00652
00653
00654
00655
00656 memset(buf, 0, sizeof(float) * AMRWB_SFR_SIZE);
00657 for (i = 0; i < AMRWB_SFR_SIZE; i++)
00658 if (fixed_vector[i])
00659 ff_celp_circ_addf(buf, buf, coef, i, fixed_vector[i],
00660 AMRWB_SFR_SIZE);
00661 fixed_vector = buf;
00662 }
00663
00664 return fixed_vector;
00665 }
00666
00671 static float stability_factor(const float *isf, const float *isf_past)
00672 {
00673 int i;
00674 float acc = 0.0;
00675
00676 for (i = 0; i < LP_ORDER - 1; i++)
00677 acc += (isf[i] - isf_past[i]) * (isf[i] - isf_past[i]);
00678
00679
00680
00681 return FFMAX(0.0, 1.25 - acc * 0.8 * 512);
00682 }
00683
00695 static float noise_enhancer(float fixed_gain, float *prev_tr_gain,
00696 float voice_fac, float stab_fac)
00697 {
00698 float sm_fac = 0.5 * (1 - voice_fac) * stab_fac;
00699 float g0;
00700
00701
00702
00703
00704 if (fixed_gain < *prev_tr_gain) {
00705 g0 = FFMIN(*prev_tr_gain, fixed_gain + fixed_gain *
00706 (6226 * (1.0f / (1 << 15))));
00707 } else
00708 g0 = FFMAX(*prev_tr_gain, fixed_gain *
00709 (27536 * (1.0f / (1 << 15))));
00710
00711 *prev_tr_gain = g0;
00712
00713 return sm_fac * g0 + (1 - sm_fac) * fixed_gain;
00714 }
00715
00722 static void pitch_enhancer(float *fixed_vector, float voice_fac)
00723 {
00724 int i;
00725 float cpe = 0.125 * (1 + voice_fac);
00726 float last = fixed_vector[0];
00727
00728 fixed_vector[0] -= cpe * fixed_vector[1];
00729
00730 for (i = 1; i < AMRWB_SFR_SIZE - 1; i++) {
00731 float cur = fixed_vector[i];
00732
00733 fixed_vector[i] -= cpe * (last + fixed_vector[i + 1]);
00734 last = cur;
00735 }
00736
00737 fixed_vector[AMRWB_SFR_SIZE - 1] -= cpe * last;
00738 }
00739
00750 static void synthesis(AMRWBContext *ctx, float *lpc, float *excitation,
00751 float fixed_gain, const float *fixed_vector,
00752 float *samples)
00753 {
00754 ff_weighted_vector_sumf(excitation, ctx->pitch_vector, fixed_vector,
00755 ctx->pitch_gain[0], fixed_gain, AMRWB_SFR_SIZE);
00756
00757
00758 if (ctx->pitch_gain[0] > 0.5 && ctx->fr_cur_mode <= MODE_8k85) {
00759 int i;
00760 float energy = ff_dot_productf(excitation, excitation,
00761 AMRWB_SFR_SIZE);
00762
00763
00764
00765 float pitch_factor = 0.25 * ctx->pitch_gain[0] * ctx->pitch_gain[0];
00766
00767 for (i = 0; i < AMRWB_SFR_SIZE; i++)
00768 excitation[i] += pitch_factor * ctx->pitch_vector[i];
00769
00770 ff_scale_vector_to_given_sum_of_squares(excitation, excitation,
00771 energy, AMRWB_SFR_SIZE);
00772 }
00773
00774 ff_celp_lp_synthesis_filterf(samples, lpc, excitation,
00775 AMRWB_SFR_SIZE, LP_ORDER);
00776 }
00777
00787 static void de_emphasis(float *out, float *in, float m, float mem[1])
00788 {
00789 int i;
00790
00791 out[0] = in[0] + m * mem[0];
00792
00793 for (i = 1; i < AMRWB_SFR_SIZE; i++)
00794 out[i] = in[i] + out[i - 1] * m;
00795
00796 mem[0] = out[AMRWB_SFR_SIZE - 1];
00797 }
00798
00807 static void upsample_5_4(float *out, const float *in, int o_size)
00808 {
00809 const float *in0 = in - UPS_FIR_SIZE + 1;
00810 int i, j, k;
00811 int int_part = 0, frac_part;
00812
00813 i = 0;
00814 for (j = 0; j < o_size / 5; j++) {
00815 out[i] = in[int_part];
00816 frac_part = 4;
00817 i++;
00818
00819 for (k = 1; k < 5; k++) {
00820 out[i] = ff_dot_productf(in0 + int_part, upsample_fir[4 - frac_part],
00821 UPS_MEM_SIZE);
00822 int_part++;
00823 frac_part--;
00824 i++;
00825 }
00826 }
00827 }
00828
00838 static float find_hb_gain(AMRWBContext *ctx, const float *synth,
00839 uint16_t hb_idx, uint8_t vad)
00840 {
00841 int wsp = (vad > 0);
00842 float tilt;
00843
00844 if (ctx->fr_cur_mode == MODE_23k85)
00845 return qua_hb_gain[hb_idx] * (1.0f / (1 << 14));
00846
00847 tilt = ff_dot_productf(synth, synth + 1, AMRWB_SFR_SIZE - 1) /
00848 ff_dot_productf(synth, synth, AMRWB_SFR_SIZE);
00849
00850
00851 return av_clipf((1.0 - FFMAX(0.0, tilt)) * (1.25 - 0.25 * wsp), 0.1, 1.0);
00852 }
00853
00863 static void scaled_hb_excitation(AMRWBContext *ctx, float *hb_exc,
00864 const float *synth_exc, float hb_gain)
00865 {
00866 int i;
00867 float energy = ff_dot_productf(synth_exc, synth_exc, AMRWB_SFR_SIZE);
00868
00869
00870 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
00871 hb_exc[i] = 32768.0 - (uint16_t) av_lfg_get(&ctx->prng);
00872
00873 ff_scale_vector_to_given_sum_of_squares(hb_exc, hb_exc,
00874 energy * hb_gain * hb_gain,
00875 AMRWB_SFR_SIZE_16k);
00876 }
00877
00881 static float auto_correlation(float *diff_isf, float mean, int lag)
00882 {
00883 int i;
00884 float sum = 0.0;
00885
00886 for (i = 7; i < LP_ORDER - 2; i++) {
00887 float prod = (diff_isf[i] - mean) * (diff_isf[i - lag] - mean);
00888 sum += prod * prod;
00889 }
00890 return sum;
00891 }
00892
00900 static void extrapolate_isf(float out[LP_ORDER_16k], float isf[LP_ORDER])
00901 {
00902 float diff_isf[LP_ORDER - 2], diff_mean;
00903 float *diff_hi = diff_isf - LP_ORDER + 1;
00904 float corr_lag[3];
00905 float est, scale;
00906 int i, i_max_corr;
00907
00908 memcpy(out, isf, (LP_ORDER - 1) * sizeof(float));
00909 out[LP_ORDER_16k - 1] = isf[LP_ORDER - 1];
00910
00911
00912 for (i = 0; i < LP_ORDER - 2; i++)
00913 diff_isf[i] = isf[i + 1] - isf[i];
00914
00915 diff_mean = 0.0;
00916 for (i = 2; i < LP_ORDER - 2; i++)
00917 diff_mean += diff_isf[i] * (1.0f / (LP_ORDER - 4));
00918
00919
00920 i_max_corr = 0;
00921 for (i = 0; i < 3; i++) {
00922 corr_lag[i] = auto_correlation(diff_isf, diff_mean, i + 2);
00923
00924 if (corr_lag[i] > corr_lag[i_max_corr])
00925 i_max_corr = i;
00926 }
00927 i_max_corr++;
00928
00929 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
00930 out[i] = isf[i - 1] + isf[i - 1 - i_max_corr]
00931 - isf[i - 2 - i_max_corr];
00932
00933
00934 est = 7965 + (out[2] - out[3] - out[4]) / 6.0;
00935 scale = 0.5 * (FFMIN(est, 7600) - out[LP_ORDER - 2]) /
00936 (out[LP_ORDER_16k - 2] - out[LP_ORDER - 2]);
00937
00938 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
00939 diff_hi[i] = scale * (out[i] - out[i - 1]);
00940
00941
00942 for (i = LP_ORDER; i < LP_ORDER_16k - 1; i++)
00943 if (diff_hi[i] + diff_hi[i - 1] < 5.0) {
00944 if (diff_hi[i] > diff_hi[i - 1]) {
00945 diff_hi[i - 1] = 5.0 - diff_hi[i];
00946 } else
00947 diff_hi[i] = 5.0 - diff_hi[i - 1];
00948 }
00949
00950 for (i = LP_ORDER - 1; i < LP_ORDER_16k - 1; i++)
00951 out[i] = out[i - 1] + diff_hi[i] * (1.0f / (1 << 15));
00952
00953
00954 for (i = 0; i < LP_ORDER_16k - 1; i++)
00955 out[i] *= 0.8;
00956 }
00957
00967 static void lpc_weighting(float *out, const float *lpc, float gamma, int size)
00968 {
00969 int i;
00970 float fac = gamma;
00971
00972 for (i = 0; i < size; i++) {
00973 out[i] = lpc[i] * fac;
00974 fac *= gamma;
00975 }
00976 }
00977
00989 static void hb_synthesis(AMRWBContext *ctx, int subframe, float *samples,
00990 const float *exc, const float *isf, const float *isf_past)
00991 {
00992 float hb_lpc[LP_ORDER_16k];
00993 enum Mode mode = ctx->fr_cur_mode;
00994
00995 if (mode == MODE_6k60) {
00996 float e_isf[LP_ORDER_16k];
00997 double e_isp[LP_ORDER_16k];
00998
00999 ff_weighted_vector_sumf(e_isf, isf_past, isf, isfp_inter[subframe],
01000 1.0 - isfp_inter[subframe], LP_ORDER);
01001
01002 extrapolate_isf(e_isf, e_isf);
01003
01004 e_isf[LP_ORDER_16k - 1] *= 2.0;
01005 ff_acelp_lsf2lspd(e_isp, e_isf, LP_ORDER_16k);
01006 ff_amrwb_lsp2lpc(e_isp, hb_lpc, LP_ORDER_16k);
01007
01008 lpc_weighting(hb_lpc, hb_lpc, 0.9, LP_ORDER_16k);
01009 } else {
01010 lpc_weighting(hb_lpc, ctx->lp_coef[subframe], 0.6, LP_ORDER);
01011 }
01012
01013 ff_celp_lp_synthesis_filterf(samples, hb_lpc, exc, AMRWB_SFR_SIZE_16k,
01014 (mode == MODE_6k60) ? LP_ORDER_16k : LP_ORDER);
01015 }
01016
01028 static void hb_fir_filter(float *out, const float fir_coef[HB_FIR_SIZE + 1],
01029 float mem[HB_FIR_SIZE], const float *in)
01030 {
01031 int i, j;
01032 float data[AMRWB_SFR_SIZE_16k + HB_FIR_SIZE];
01033
01034 memcpy(data, mem, HB_FIR_SIZE * sizeof(float));
01035 memcpy(data + HB_FIR_SIZE, in, AMRWB_SFR_SIZE_16k * sizeof(float));
01036
01037 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++) {
01038 out[i] = 0.0;
01039 for (j = 0; j <= HB_FIR_SIZE; j++)
01040 out[i] += data[i + j] * fir_coef[j];
01041 }
01042
01043 memcpy(mem, data + AMRWB_SFR_SIZE_16k, HB_FIR_SIZE * sizeof(float));
01044 }
01045
01049 static void update_sub_state(AMRWBContext *ctx)
01050 {
01051 memmove(&ctx->excitation_buf[0], &ctx->excitation_buf[AMRWB_SFR_SIZE],
01052 (AMRWB_P_DELAY_MAX + LP_ORDER + 1) * sizeof(float));
01053
01054 memmove(&ctx->pitch_gain[1], &ctx->pitch_gain[0], 5 * sizeof(float));
01055 memmove(&ctx->fixed_gain[1], &ctx->fixed_gain[0], 1 * sizeof(float));
01056
01057 memmove(&ctx->samples_az[0], &ctx->samples_az[AMRWB_SFR_SIZE],
01058 LP_ORDER * sizeof(float));
01059 memmove(&ctx->samples_up[0], &ctx->samples_up[AMRWB_SFR_SIZE],
01060 UPS_MEM_SIZE * sizeof(float));
01061 memmove(&ctx->samples_hb[0], &ctx->samples_hb[AMRWB_SFR_SIZE_16k],
01062 LP_ORDER_16k * sizeof(float));
01063 }
01064
01065 static int amrwb_decode_frame(AVCodecContext *avctx, void *data, int *data_size,
01066 AVPacket *avpkt)
01067 {
01068 AMRWBContext *ctx = avctx->priv_data;
01069 AMRWBFrame *cf = &ctx->frame;
01070 const uint8_t *buf = avpkt->data;
01071 int buf_size = avpkt->size;
01072 int expected_fr_size, header_size;
01073 float *buf_out = data;
01074 float spare_vector[AMRWB_SFR_SIZE];
01075 float fixed_gain_factor;
01076 float *synth_fixed_vector;
01077 float synth_fixed_gain;
01078 float voice_fac, stab_fac;
01079 float synth_exc[AMRWB_SFR_SIZE];
01080 float hb_exc[AMRWB_SFR_SIZE_16k];
01081 float hb_samples[AMRWB_SFR_SIZE_16k];
01082 float hb_gain;
01083 int sub, i;
01084
01085 header_size = decode_mime_header(ctx, buf);
01086 expected_fr_size = ((cf_sizes_wb[ctx->fr_cur_mode] + 7) >> 3) + 1;
01087
01088 if (buf_size < expected_fr_size) {
01089 av_log(avctx, AV_LOG_ERROR,
01090 "Frame too small (%d bytes). Truncated file?\n", buf_size);
01091 *data_size = 0;
01092 return buf_size;
01093 }
01094
01095 if (!ctx->fr_quality || ctx->fr_cur_mode > MODE_SID)
01096 av_log(avctx, AV_LOG_ERROR, "Encountered a bad or corrupted frame\n");
01097
01098 if (ctx->fr_cur_mode == MODE_SID)
01099 av_log_missing_feature(avctx, "SID mode", 1);
01100
01101 if (ctx->fr_cur_mode >= MODE_SID)
01102 return -1;
01103
01104 ff_amr_bit_reorder((uint16_t *) &ctx->frame, sizeof(AMRWBFrame),
01105 buf + header_size, amr_bit_orderings_by_mode[ctx->fr_cur_mode]);
01106
01107
01108 if (ctx->fr_cur_mode == MODE_6k60) {
01109 decode_isf_indices_36b(cf->isp_id, ctx->isf_cur);
01110 } else {
01111 decode_isf_indices_46b(cf->isp_id, ctx->isf_cur);
01112 }
01113
01114 isf_add_mean_and_past(ctx->isf_cur, ctx->isf_q_past);
01115 ff_set_min_dist_lsf(ctx->isf_cur, MIN_ISF_SPACING, LP_ORDER - 1);
01116
01117 stab_fac = stability_factor(ctx->isf_cur, ctx->isf_past_final);
01118
01119 ctx->isf_cur[LP_ORDER - 1] *= 2.0;
01120 ff_acelp_lsf2lspd(ctx->isp[3], ctx->isf_cur, LP_ORDER);
01121
01122
01123 if (ctx->first_frame) {
01124 ctx->first_frame = 0;
01125 memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(double));
01126 }
01127 interpolate_isp(ctx->isp, ctx->isp_sub4_past);
01128
01129 for (sub = 0; sub < 4; sub++)
01130 ff_amrwb_lsp2lpc(ctx->isp[sub], ctx->lp_coef[sub], LP_ORDER);
01131
01132 for (sub = 0; sub < 4; sub++) {
01133 const AMRWBSubFrame *cur_subframe = &cf->subframe[sub];
01134 float *sub_buf = buf_out + sub * AMRWB_SFR_SIZE_16k;
01135
01136
01137 decode_pitch_vector(ctx, cur_subframe, sub);
01138
01139 decode_fixed_vector(ctx->fixed_vector, cur_subframe->pul_ih,
01140 cur_subframe->pul_il, ctx->fr_cur_mode);
01141
01142 pitch_sharpening(ctx, ctx->fixed_vector);
01143
01144 decode_gains(cur_subframe->vq_gain, ctx->fr_cur_mode,
01145 &fixed_gain_factor, &ctx->pitch_gain[0]);
01146
01147 ctx->fixed_gain[0] =
01148 ff_amr_set_fixed_gain(fixed_gain_factor,
01149 ff_dot_productf(ctx->fixed_vector, ctx->fixed_vector,
01150 AMRWB_SFR_SIZE) / AMRWB_SFR_SIZE,
01151 ctx->prediction_error,
01152 ENERGY_MEAN, energy_pred_fac);
01153
01154
01155 voice_fac = voice_factor(ctx->pitch_vector, ctx->pitch_gain[0],
01156 ctx->fixed_vector, ctx->fixed_gain[0]);
01157 ctx->tilt_coef = voice_fac * 0.25 + 0.25;
01158
01159
01160 for (i = 0; i < AMRWB_SFR_SIZE; i++) {
01161 ctx->excitation[i] *= ctx->pitch_gain[0];
01162 ctx->excitation[i] += ctx->fixed_gain[0] * ctx->fixed_vector[i];
01163 ctx->excitation[i] = truncf(ctx->excitation[i]);
01164 }
01165
01166
01167 synth_fixed_gain = noise_enhancer(ctx->fixed_gain[0], &ctx->prev_tr_gain,
01168 voice_fac, stab_fac);
01169
01170 synth_fixed_vector = anti_sparseness(ctx, ctx->fixed_vector,
01171 spare_vector);
01172
01173 pitch_enhancer(synth_fixed_vector, voice_fac);
01174
01175 synthesis(ctx, ctx->lp_coef[sub], synth_exc, synth_fixed_gain,
01176 synth_fixed_vector, &ctx->samples_az[LP_ORDER]);
01177
01178
01179 de_emphasis(&ctx->samples_up[UPS_MEM_SIZE],
01180 &ctx->samples_az[LP_ORDER], PREEMPH_FAC, ctx->demph_mem);
01181
01182 ff_acelp_apply_order_2_transfer_function(&ctx->samples_up[UPS_MEM_SIZE],
01183 &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_31_poles,
01184 hpf_31_gain, ctx->hpf_31_mem, AMRWB_SFR_SIZE);
01185
01186 upsample_5_4(sub_buf, &ctx->samples_up[UPS_FIR_SIZE],
01187 AMRWB_SFR_SIZE_16k);
01188
01189
01190 ff_acelp_apply_order_2_transfer_function(hb_samples,
01191 &ctx->samples_up[UPS_MEM_SIZE], hpf_zeros, hpf_400_poles,
01192 hpf_400_gain, ctx->hpf_400_mem, AMRWB_SFR_SIZE);
01193
01194 hb_gain = find_hb_gain(ctx, hb_samples,
01195 cur_subframe->hb_gain, cf->vad);
01196
01197 scaled_hb_excitation(ctx, hb_exc, synth_exc, hb_gain);
01198
01199 hb_synthesis(ctx, sub, &ctx->samples_hb[LP_ORDER_16k],
01200 hb_exc, ctx->isf_cur, ctx->isf_past_final);
01201
01202
01203 hb_fir_filter(hb_samples, bpf_6_7_coef, ctx->bpf_6_7_mem,
01204 &ctx->samples_hb[LP_ORDER_16k]);
01205
01206 if (ctx->fr_cur_mode == MODE_23k85)
01207 hb_fir_filter(hb_samples, lpf_7_coef, ctx->lpf_7_mem,
01208 hb_samples);
01209
01210
01211 for (i = 0; i < AMRWB_SFR_SIZE_16k; i++)
01212 sub_buf[i] = (sub_buf[i] + hb_samples[i]) * (1.0f / (1 << 15));
01213
01214
01215 update_sub_state(ctx);
01216 }
01217
01218
01219 memcpy(ctx->isp_sub4_past, ctx->isp[3], LP_ORDER * sizeof(ctx->isp[3][0]));
01220 memcpy(ctx->isf_past_final, ctx->isf_cur, LP_ORDER * sizeof(float));
01221
01222
01223 *data_size = 4 * AMRWB_SFR_SIZE_16k * sizeof(float);
01224
01225 return expected_fr_size;
01226 }
01227
01228 AVCodec ff_amrwb_decoder = {
01229 .name = "amrwb",
01230 .type = AVMEDIA_TYPE_AUDIO,
01231 .id = CODEC_ID_AMR_WB,
01232 .priv_data_size = sizeof(AMRWBContext),
01233 .init = amrwb_decode_init,
01234 .decode = amrwb_decode_frame,
01235 .long_name = NULL_IF_CONFIG_SMALL("Adaptive Multi-Rate WideBand"),
01236 .sample_fmts = (const enum AVSampleFormat[]){AV_SAMPLE_FMT_FLT,AV_SAMPLE_FMT_NONE},
01237 };